Citation: | Cheng Chang, Mercouri G. Kanatzidis. High-entropy thermoelectric materials emerging[J]. Materials Lab, 2023, 2(1): 220048. doi: 10.54227/mlab.20220048 |
1. | N. Dragoe, Materials Lab, 2022, 1, 220001 |
2. | S. Zhao, Z. Li, Materials Lab, 2022, 1, 220035 |
3. | N. Dragoe, D. Bérardan, Science, 2019, 366, 573 |
4. | D. B. Miracle, O. N. Senkov, Acta Mater., 2017, 122, 448 |
5. | Z. Liu, W. Gao, F. Guo, W. Cai, Q. Zhang, J. Sui, Materials Lab, 2022, 1, 220003 |
6. | B. Qin, L.-D. Zhao, Materials Lab, 2022, 1, 220004 |
7. | L.-D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature, 2014, 508, 373 |
8. | L.-D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton, M. G. Kanatzdis, Science, 2016, 351, 141 |
9. | L. Su, D. Wang, S. Wang, B. Qin, Y. Wang, Y. Qin, Y. Jin, C. Chang, L.-D. Zhao, Science, 2022, 375, 1385 |
10. | C. Chang, M. Wu, D. He, Y. Pei, C. F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, L. Huang, J.-F. Li, J. He, L.-D. Zhao, Science, 2018, 360, 778 |
11. | Y. Xiao, L.-D. Zhao, Science, 2020, 367, 1196 |
12. | B. Qin, D. Wang, X. Liu, Y. Qin, J.-F. Dong, J. Luo, J.-W. Li, W. Liu, G. Tan, X. Tang, J.-F. Li, J. He, L.-D. Zhao, Science, 2021, 373, 556 |
13. | B. Jiang, Y. Yu, J. Cui, X. Liu, L. Xie, J. Liao, Q. Zhang, Y. Huang, S. Ning, B. Jia, B. Zhu, S. Bai, L. Chen, S. J. Pennycook, J. He, Science, 2021, 371, 830 |
14. | R. J. Korkosz, T. C. Chasapis, S. H. Lo, J. W. Doak, Y. J. Kim, C. I. Wu, E. Hatzikraniotis, T. P. Hogan, D. N. Seidman, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, J. Am. Chem. Soc., 2014, 136, 3225 |
15. | L. Hu, Y. Zhang, H. Wu, J. Li, Y. Li, M. McKenna, J. He, F. Liu, S. J. Pennycook, X. Zeng, Adv. Energy Mater., 2018, 8, 1802116 |
16. | B. Jiang, P. Qiu, H. Chen, J. Huang, T. Mao, Y. Wang, Q. Song, D. Ren, X. Shi, L. Chen, Mater. Today Phys., 2018, 5, 20 |
17. | R. Liu, H. Chen, K. Zhao, Y. Qin, B. Jiang, T. Zhang, G. Sha, X. Shi, C. Uher, W. Zhang, L. Chen, Adv. Mater., 2017, 29, 1702712 |
18. | B. Jiang, W. Wang, S. Liu, Y. Wang, C. Wang, Y. Chen, L. Xie, M. Huang, J. He, Science, 2022, 377, 208 |
19. | M. Hong, J. Zou, Z. G. Chen, Adv. Mater., 2019, 31, e1807071 |
20. | W. G. Zeier, A. Zevalkink, Z. M. Gibbs, G. Hautier, M. G. Kanatzidis, G. J. Snyder, Angew. Chem. Int. Ed., 2016, 55, 6826 |
21. | H. Wang, X. Cao, Y. Takagiwa, G. J. Snyder, Mater. Horiz., 2015, 2, 323 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
a, From left to right: the crystal structure of low-temperature GeTe (R3m), high-entropy GeTe (R3m), and high temperature GeTe (Fm-3m). Low-temperature GeTe has the advantage of low lattice thermal conductivity. High-temperature GeTe has the advantage of high electrical transport. High electrical transport and low thermal transport could coexist in high-entropy GeTe. b, Temperature-dependent ZT values for the high-entropy GeTe. The reported results in the literature are also included for comparison.[18]