Citation: | Chunyan Qin, Zhilian Yue, Nieves Casañ-Pastor, Jun Chen, Gordon Wallace. The promises and future directions of wireless stimulation in biomedical applications[J]. Materials Lab, 2023, 2(2): 220058. doi: 10.54227/mlab.20220058 |
Wireless stimulation (WS) technologies have been developed as powerful strategies to modulate cellular behaviour and biological activity remotely and noninvasively through wireless manipulation of electrical signal. These WS systems are constructed from the electrically stimulus-responsive materials (magnetoelectric, piezoelectric, optoelectronic, and bipolar electroactive materials) that are triggered by the primary driving force, general like magnetic field, ultrasound, light, and electric field. With a deeper understanding of the integral role of electrical stimulation played in biological cells, tissues, and organs, WS has become the promising technique to work on neural cell stimulation, for either functional or repair effects, and other biological activities including drug release, electroporation and cancer treatment. This paper summarises existing WS systems in accordance with the utilised stimulus-responsive materials. Also, future directions of WS in potential biomedical applications are discussed. Along with the development of emerging techniques such as bipolar electrochemistry and 3D printing, more effective WS systems will be allowed to apply in biosystems with a change of paradigm.
1. | R. Guduru, P. Liang, J. Hong, A. Rodzinski, A. Hadjikhani, J. Horstmyer, E. Levister, S. Khizroev, Nanomedicine, 2015, 10, 2051 |
2. | G. Ciofani, S. Danti, D. D’Alessandro, L. Ricotti, S. Moscato, G. Bertoni, A. Falqui, S. Berrettini, M. Petrini, V. Mattoli, A. Menciassi, ACS Nano, 2010, 4, 6267 |
3. | Y. S. Hsiao, Y. H. Liao, H. L. Chen, P. Chen, F. C. Chen, ACS Appl. Mater. Interfaces, 2016, 8, 9275 |
4. | C. Qin, Z. Yue, Y. Chao, R. J. Forster, F. Maolmhuaidh, X. F. Huang, S. Beirne, G. G. Wallace, J. Chen, Appl. Mater. Today, 2020, 21, 100804 |
5. | A. Singer, S. Dutta, E. Lewis, Z. Chen, J. C. Chen, N. Verma, B. Avants, A. K. Feldman, J. O’Malley, M. Beierlein, C. Kemere, J. T. Robinson, Neuron, 2020, 107, 631 |
6. | J. Hopkins, L. Travaglini, A. Lauto, T. Cramer, B. Fraboni, J. Seidel, D. Mawad, Adv. Mater. Technol., 2019, 4, 1 |
7. | N. A. Repina, A. Rosenbloom, A. Mukherjee, D. V. Schaffer, R. S. Kane, Annu. Rev. Chem. Biomol. Eng., 2017, 8, 13 |
8. | J. Koo, M. R. MacEwan, S. K. Kang, S. M. Won, M. Stephen, P. Gamble, Z. Xie, Y. Yan, Y. Y. Chen, J. Shin, N. Birenbaum, S. Chung, S. B. Kim, J. Khalifeh, D. V. Harburg, K. Bean, M. Paskett, J. Kim, Z. S. Zohny, S. M. Lee, R. Zhang, K. Luo, B. Ji, A. Banks, H. M. Lee, Y. Huang, W. Z. Ray, J. A. Rogers, Nat. Med., 2018, 24, 1830 |
9. | X. Wang, J. Law, M. Luo, Z. Gong, J. Yu, W. Tang, Z. Zhang, X. Mei, Z. Huang, L. You, Y. Sun, ACS Nano, 2020, 14, 3805 |
10. | H. Wang, A. J. F. Tampio, Y. Xu, B. D. Nicholas, D. Ren, ACS Biomater. Sci. Eng., 2020, 6, 727 |
11. | A. Marino, G. G. Genchi, M. Pisano, P. Massobrio, M. Tedesco, S. Martinoia, R. Raiteri, G. Ciofani, Neural Interface Engineering, 2020, 347 |
12. | J. Kubanek, P. Shukla, A. Das, S. A. Baccus, M. B. Goodman, Journal of Neuroscience, 2018, 38, 3081 |
13. | D. K. Piech, B. C. Johnson, K. Shen, M. M. Ghanbari, K. Y. Li, R. M. Neely, J. E. Kay, J. M. Carmena, M. M. Maharbiz, R. Muller, Nat. Biomed. Eng., 2020, 4, 207 |
14. | A. Marino, S. Arai, Y. Hou, E. Sinibaldi, M. Pellegrino, Y. Chang, ACS Nano, 2015, 9, 7678 |
15. | A. Marino, J. Barsotti, G. De Vito, C. Filippeschi, B. Mazzolai, V. Piazza, M. Labardi, V. Mattoli, G. Ciofani, ACS Appl. Mater. Interfaces, 2015, 7, 25574 |
16. | M. Hoop, X. Z. Chen, A. Ferrari, F. Mushtaq, G. Ghazaryan, T. Tervoort, D. Poulikakos, B. Nelson, S. Pané, Sci. Rep., 2017, 7, 1 |
17. | G. G. Genchi, L. Ceseracciu, A. Marino, M. Labardi, S. Marras, F. Pignatelli, L. Bruschini, V. Mattoli, G. Ciofani, Adv. Healthc. Mater., 2016, 5, 1808 |
18. | G. G. Genchi, E. Sinibaldi, L. Ceseracciu, M. Labardi, A. Marino, S. Marras, G. De Simoni, V. Mattoli, G. Ciofani, Nanomedicine, 2018, 14, 2421 |
19. | J. Li, K. Pu, Chem. Soc. Rev., 2019, 48, 38 |
20. | R. Qazi, A. M. Gomez, D. C. Castro, Z. Zou, J. Y. Sim, Y. Xiong, J. Abdo, C. Y. Kim, A. Anderson, F. Lohner, S. H. Byun, B. Chul Lee, K. I. Jang, J. Xiao, M. R. Bruchas, J. W. Jeong, Nat. Biomed. Eng., 2019, 3, 655 |
21. | T. C. Pappas, W. M. S. Wickramanyake, E. Jan, M. Motamedi, M. Brodwick, N. A. Kotov, Nano Lett., 2007, 7, 513 |
22. | L. Bareket-Keren, Y. Hanein, Int. J. Nanomedicine, 2014, 9, 65 |
23. | J. Li, J. Liu, C. Chen, ACS Nano, 2017, 11, 2403 |
24. | Y. Wang, K. Xie, H. Yue, X. Chen, X. Luo, Q. Liao, M. Liu, F. Wang, P. Shi, Nanoscale, 2020, 12, 2406 |
25. | J. G. McCall, T. Il Kim, G. Shin, X. Huang, Y. H. Jung, R. Al-Hasani, F. G. Omenetto, M. R. Bruchas, J. A. Rogers, Nat. Protoc., 2013, 8, 2413 |
26. | S. Löffler, B. Libberton, A. Richter-Dahlfors, Electronics (Switzerland), 2015, 4, 879 |
27. | M. Jakešová, M. Silverå Ejneby, V. Đerek, T. Schmidt, M. Gryszel, J. Brask, R. Schindl, D. T. Simon, M. Berggren, F. Elinder, E. D. Głowacki, Sci. Adv., 2019, 5, eaav5265 |
28. | Y. Wu, Y. Peng, H. Bohra, J. Zou, V. D. Ranjan, Y. Zhang, Q. Zhang, M. Wang, ACS Appl. Mater. Interfaces, 2019, 11, 4833 |
29. | H. Sun, D. Yu, Y. Guan, Z. Du, J. Ren, X. Qu, Chemical Communications, 2019, 55, 9833 |
30. | W. Li, R. Luo, X. Lin, A. D. Jadhav, Z. Zhang, L. Yan, C. Y. Chan, X. Chen, J. He, C. H. Chen, P. Shi, Biomaterials, 2015, 65, 76 |
31. | C. Qin, Z. Yue, X. F. Huang, R. J. Forster, G. G. Wallace, J. Chen, Appl. Mater. Today, 2022, 27, 101481 |
32. | C. Qin, Z. Yue, X.-F. Huang, R. J. Forster, G. G. Wallace, J. Chen, Data Brief, 2022, 43, 108393 |
33. | C. Qin, Z. Yue, Y. Chao, R. J. Forster, F. Maolmhuaidh, X. F. Huang, S. Beirne, G. G. Wallace, J. Chen, Data Brief, 2020, 33, 106406 |
34. | N. Shida, Y. Zhou, S. Inagi, Acc. Chem. Res., 2019, 52, 2598 |
35. | S. E. Fosdick, K. N. Knust, K. Scida, R. M. Crooks, Angewandte Chemie International Edition, 2013, 52, 10438 |
36. | R. M. Crooks, ChemElectroChem, 2016, 3, 357 |
37. | A. M. Rajnicek, Z. Zhao, J. Moral-Vico, A. M. Cruz, C. D. McCaig, N. Casañ-Pastor, Adv. Healthc. Mater., 2018, 7, 1800473 |
38. | J.-C. Bradley, H.-M. Chen, J. Crawford, J. Eckert, K. Ernazarova, T. Kurzeja, M. Lin, M. McGee, W. Nadler, S. G. Stephens, Nature, 1997, 389, 268 |
39. | J. Bradley, J. Crawford, K. Ernazarova, M. McGee, S. G. Stephens, Advanced Materials, 1997, 9, 1168 |
40. | L. Fuentes-Rodriguez, L. Abad, L. Simonelli, D. Tonti, N. Casañ-Pastor, Journal of Physical Chemistry C, 2021, 125, 16629 |
41. | Y. Yang, C. Wang, S. Ashraf, G. G. Wallace, RSC Adv., 2013, 3, 5447 |
42. | R. Guo, J. N. Barisci, P. C. Innis, C. O. Too, G. G. Wallace, D. Zhou, Synth. Met., 2000, 114, 267 |
43. | X. Liu, K. J. Gilmore, S. E. Moulton, G. G. Wallace, J. Neural Eng., 2009, 6, 065002 |
44. | K. J. Gilmore, M. Kita, Y. Han, A. Gelmi, M. J. Higgins, S. E. Moulton, G. M. Clark, R. Kapsa, G. G. Wallace, Biomaterials, 2009, 30, 5292 |
45. | J. U. Khan, A. Ruland, S. Sayyar, B. Paull, J. Chen, P. C. Innis, Lab Chip, 2021, 21, 3979 |
46. | R. K. Perdue, D. R. Laws, D. Hlushkou, U. Tallarek, R. M. Crooks, Anal. Chem., 2009, 81, 10149 |
47. | L. Chen, A. Ghiasvand, S. C. Lam, E. S. Rodriguez, P. C. Innis, B. Paull, Anal. Chim. Acta, 2022, 1193, 338810 |
48. | D. R. Laws, D. Hlushkou, R. K. Perdue, U. Tallarek, R. M. Crooks, Anal. Chem., 2009, 81, 8923 |
49. | R. Chen, G. Romero, M. G. Christiansen, A. Mohr, P. Anikeeva, Science, 2015, 347, 1477 |
50. | A. M. Lozano, N. Lipsman, H. Bergman, P. Brown, S. Chabardes, J. W. Chang, K. Matthews, C. C. McIntyre, T. E. Schlaepfer, M. Schulder, Y. Temel, J. Volkmann, J. K. Krauss, Nat. Rev. Neurol., 2019, 15, 148 |
51. | C. Qin, Z. Yue, G. G. Wallace, J. Chen, ACS Appl. Bio. Mater., 2022, 5, 5041 |
52. | J. Moral-Vico, N. M. Carretero, E. Pérez, C. Suñol, M. Lichtenstein, N. Casañ-Pastor, Electrochim. Acta, 2013, 111, 250 |
53. | B. C. Thompson, J. Chen, S. E. Moulton, G. G. Wallace, Nanoscale, 2010, 2, 499 |
54. | A. J. Evans, B. C. Thompson, G. G. Wallace, R. Millard, S. J. O’Leary, G. M. Clark, R. K. Shepherd, R. T. Richardson, J. Biomed. Mater. Res. A, 2009, 91, 241 |
55. | R. T. Richardson, B. Thompson, S. Moulton, C. Newbold, M. G. Lum, A. Cameron, G. Wallace, R. Kapsa, G. Clark, S. O’Leary, Biomaterials, 2007, 28, 513 |
56. | B. C. Thompson, R. T. Richardson, S. E. Moulton, A. J. Evans, S. O’Leary, G. M. Clark, G. G. Wallace, Journal of Controlled Release, 2010, 141, 161 |
57. | C. D. O’Connell, S. Konate, C. Onofrillo, R. Kapsa, C. Baker, S. Duchi, T. Eekel, Z. Yue, S. Beirne, G. Barnsley, C. Di Bella, P. F. Choong, G. G. Wallace, Bioprinting, 2020, 19, e00087 |
58. | Y. Fan, Z. Yue, E. Lucarelli, G. G. Wallace, Adv. Healthc. Mater., 2020, 9, 1 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Bipolar electroactive conjugated polymers based WS systems. Bipolar electrochemical activity of PPy was realised and enhanced with PMAS incorporation in biological solution, displaying gradient colours across the surfaces (left). Soft PPy matrix was obtained with removal of rigid substrate (middle). Both rat pheochromocytoma cell (PC 12) and human neuroblastoma cell (SH-SY5Y) differentiation was promoted due to the enhanced bipolar electroactivity and the addition of softness property (right).[4,31–33] Copyright 2020, 2022 Elsevier Ltd.
Schematic of various 3D printed bipolar electroactive architectures. a Lattice and cylindrical structures and b nerve conduits.