Chunyan Qin, Zhilian Yue, Nieves Casañ-Pastor, Jun Chen, Gordon Wallace. The promises and future directions of wireless stimulation in biomedical applications[J]. Materials Lab, 2023, 2(2): 220058. doi: 10.54227/mlab.20220058
Citation: Chunyan Qin, Zhilian Yue, Nieves Casañ-Pastor, Jun Chen, Gordon Wallace. The promises and future directions of wireless stimulation in biomedical applications[J]. Materials Lab, 2023, 2(2): 220058. doi: 10.54227/mlab.20220058

PERSPECTIVE

The promises and future directions of wireless stimulation in biomedical applications

More Information
  • Corresponding author: gwallace@uow.edu.au
  • Wireless stimulation (WS) technologies have been developed as powerful strategies to modulate cellular behaviour and biological activity remotely and noninvasively through wireless manipulation of electrical signal. These WS systems are constructed from the electrically stimulus-responsive materials (magnetoelectric, piezoelectric, optoelectronic, and bipolar electroactive materials) that are triggered by the primary driving force, general like magnetic field, ultrasound, light, and electric field. With a deeper understanding of the integral role of electrical stimulation played in biological cells, tissues, and organs, WS has become the promising technique to work on neural cell stimulation, for either functional or repair effects, and other biological activities including drug release, electroporation and cancer treatment. This paper summarises existing WS systems in accordance with the utilised stimulus-responsive materials. Also, future directions of WS in potential biomedical applications are discussed. Along with the development of emerging techniques such as bipolar electrochemistry and 3D printing, more effective WS systems will be allowed to apply in biosystems with a change of paradigm.


  • 加载中
  • Chunyan Qin is currently a postdoctoral research fellow at Intelligent Polymer Research Institute (IPRI), University of Wollongong (UOW). She received her PhD degree there in 2022. Her research interests lie in biomaterials, bio interfaces, cell culture/stimulation, drug delivery, biosensors, biomedical devices etc. In 2019, she received the Bill Wheeler Award for best communicating the social impact of her bionics research.
    ZhilianYue is currently a principle research fellow in the intelligent Polymer Research Institute, University of Wollongong. Her research interests include tissue engineering and regenerative medicine, 3D bioprinting and medical bionics.
    Nieves Casañ-Pastor is Research Professor at teh CSIC Institut de Ciencia de Materials de Barcelona, Spain. Her reserach interests are electroactive materials with mixed valence and mixed conductivity as electrodes, and the local resolution required to characterize gradient materials, as well as the implications in biostimulation and energy storage. She has been CSIC Scientific Comitte a¡Advisor and has recieved a number of Grants and Awards.
    Jun Chen is currently appointed as Associate Dean of Australian Institute for Innovative Materials (AIIM), and Head of Postgraduate Studies of IPRI/UOW. His research interests include electroactive materials, catalysis, sustainable energy devices/systems, electro-/bio-interfaces, nano/micro- materials, 2D/3D printing and wearable electronic devices. He has authored over 260 peer-reviewed publications in international journals with an h-index of 78. Chen has been identified as Highly Cited Researchers in Cross Field (2018|2020-2022) and received Vice-Chancellor's Award for Researcher of the Year (UOW) in 2021.
    Gordon G. Wallace is director of IPRI, ACES, and ANFF (Materials Node). He leads a world-class integrated multidisciplinary and multi-organisational team with a global impact in the design and utilisation of electromaterials for bionics. His research has resulted in excess of 1,020 refereed publications, with more than 50,000 citations, and an h-index of 103. The quality of CI Wallace’s work is attested by the June 2018 data from the Clarivate Analytics’ Essential Science Indicators lists, which rank the top 1% of authors of papers and 1% of papers by citations, published in the last 10 years.
  • 1. R. Guduru, P. Liang, J. Hong, A. Rodzinski, A. Hadjikhani, J. Horstmyer, E. Levister, S. Khizroev, Nanomedicine, 2015, 10, 2051
    2. G. Ciofani, S. Danti, D. D’Alessandro, L. Ricotti, S. Moscato, G. Bertoni, A. Falqui, S. Berrettini, M. Petrini, V. Mattoli, A. Menciassi, ACS Nano, 2010, 4, 6267
    3. Y. S. Hsiao, Y. H. Liao, H. L. Chen, P. Chen, F. C. Chen, ACS Appl. Mater. Interfaces, 2016, 8, 9275
    4. C. Qin, Z. Yue, Y. Chao, R. J. Forster, F. Maolmhuaidh, X. F. Huang, S. Beirne, G. G. Wallace, J. Chen, Appl. Mater. Today, 2020, 21, 100804
    5. A. Singer, S. Dutta, E. Lewis, Z. Chen, J. C. Chen, N. Verma, B. Avants, A. K. Feldman, J. O’Malley, M. Beierlein, C. Kemere, J. T. Robinson, Neuron, 2020, 107, 631
    6. J. Hopkins, L. Travaglini, A. Lauto, T. Cramer, B. Fraboni, J. Seidel, D. Mawad, Adv. Mater. Technol., 2019, 4, 1
    7. N. A. Repina, A. Rosenbloom, A. Mukherjee, D. V. Schaffer, R. S. Kane, Annu. Rev. Chem. Biomol. Eng., 2017, 8, 13
    8. J. Koo, M. R. MacEwan, S. K. Kang, S. M. Won, M. Stephen, P. Gamble, Z. Xie, Y. Yan, Y. Y. Chen, J. Shin, N. Birenbaum, S. Chung, S. B. Kim, J. Khalifeh, D. V. Harburg, K. Bean, M. Paskett, J. Kim, Z. S. Zohny, S. M. Lee, R. Zhang, K. Luo, B. Ji, A. Banks, H. M. Lee, Y. Huang, W. Z. Ray, J. A. Rogers, Nat. Med., 2018, 24, 1830
    9. X. Wang, J. Law, M. Luo, Z. Gong, J. Yu, W. Tang, Z. Zhang, X. Mei, Z. Huang, L. You, Y. Sun, ACS Nano, 2020, 14, 3805
    10. H. Wang, A. J. F. Tampio, Y. Xu, B. D. Nicholas, D. Ren, ACS Biomater. Sci. Eng., 2020, 6, 727
    11. A. Marino, G. G. Genchi, M. Pisano, P. Massobrio, M. Tedesco, S. Martinoia, R. Raiteri, G. Ciofani, Neural Interface Engineering, 2020, 347
    12. J. Kubanek, P. Shukla, A. Das, S. A. Baccus, M. B. Goodman, Journal of Neuroscience, 2018, 38, 3081
    13. D. K. Piech, B. C. Johnson, K. Shen, M. M. Ghanbari, K. Y. Li, R. M. Neely, J. E. Kay, J. M. Carmena, M. M. Maharbiz, R. Muller, Nat. Biomed. Eng., 2020, 4, 207
    14. A. Marino, S. Arai, Y. Hou, E. Sinibaldi, M. Pellegrino, Y. Chang, ACS Nano, 2015, 9, 7678
    15. A. Marino, J. Barsotti, G. De Vito, C. Filippeschi, B. Mazzolai, V. Piazza, M. Labardi, V. Mattoli, G. Ciofani, ACS Appl. Mater. Interfaces, 2015, 7, 25574
    16. M. Hoop, X. Z. Chen, A. Ferrari, F. Mushtaq, G. Ghazaryan, T. Tervoort, D. Poulikakos, B. Nelson, S. Pané, Sci. Rep., 2017, 7, 1
    17. G. G. Genchi, L. Ceseracciu, A. Marino, M. Labardi, S. Marras, F. Pignatelli, L. Bruschini, V. Mattoli, G. Ciofani, Adv. Healthc. Mater., 2016, 5, 1808
    18. G. G. Genchi, E. Sinibaldi, L. Ceseracciu, M. Labardi, A. Marino, S. Marras, G. De Simoni, V. Mattoli, G. Ciofani, Nanomedicine, 2018, 14, 2421
    19. J. Li, K. Pu, Chem. Soc. Rev., 2019, 48, 38
    20. R. Qazi, A. M. Gomez, D. C. Castro, Z. Zou, J. Y. Sim, Y. Xiong, J. Abdo, C. Y. Kim, A. Anderson, F. Lohner, S. H. Byun, B. Chul Lee, K. I. Jang, J. Xiao, M. R. Bruchas, J. W. Jeong, Nat. Biomed. Eng., 2019, 3, 655
    21. T. C. Pappas, W. M. S. Wickramanyake, E. Jan, M. Motamedi, M. Brodwick, N. A. Kotov, Nano Lett., 2007, 7, 513
    22. L. Bareket-Keren, Y. Hanein, Int. J. Nanomedicine, 2014, 9, 65
    23. J. Li, J. Liu, C. Chen, ACS Nano, 2017, 11, 2403
    24. Y. Wang, K. Xie, H. Yue, X. Chen, X. Luo, Q. Liao, M. Liu, F. Wang, P. Shi, Nanoscale, 2020, 12, 2406
    25. J. G. McCall, T. Il Kim, G. Shin, X. Huang, Y. H. Jung, R. Al-Hasani, F. G. Omenetto, M. R. Bruchas, J. A. Rogers, Nat. Protoc., 2013, 8, 2413
    26. S. Löffler, B. Libberton, A. Richter-Dahlfors, Electronics (Switzerland), 2015, 4, 879
    27. M. Jakešová, M. Silverå Ejneby, V. Đerek, T. Schmidt, M. Gryszel, J. Brask, R. Schindl, D. T. Simon, M. Berggren, F. Elinder, E. D. Głowacki, Sci. Adv., 2019, 5, eaav5265
    28. Y. Wu, Y. Peng, H. Bohra, J. Zou, V. D. Ranjan, Y. Zhang, Q. Zhang, M. Wang, ACS Appl. Mater. Interfaces, 2019, 11, 4833
    29. H. Sun, D. Yu, Y. Guan, Z. Du, J. Ren, X. Qu, Chemical Communications, 2019, 55, 9833
    30. W. Li, R. Luo, X. Lin, A. D. Jadhav, Z. Zhang, L. Yan, C. Y. Chan, X. Chen, J. He, C. H. Chen, P. Shi, Biomaterials, 2015, 65, 76
    31. C. Qin, Z. Yue, X. F. Huang, R. J. Forster, G. G. Wallace, J. Chen, Appl. Mater. Today, 2022, 27, 101481
    32. C. Qin, Z. Yue, X.-F. Huang, R. J. Forster, G. G. Wallace, J. Chen, Data Brief, 2022, 43, 108393
    33. C. Qin, Z. Yue, Y. Chao, R. J. Forster, F. Maolmhuaidh, X. F. Huang, S. Beirne, G. G. Wallace, J. Chen, Data Brief, 2020, 33, 106406
    34. N. Shida, Y. Zhou, S. Inagi, Acc. Chem. Res., 2019, 52, 2598
    35. S. E. Fosdick, K. N. Knust, K. Scida, R. M. Crooks, Angewandte Chemie International Edition, 2013, 52, 10438
    36. R. M. Crooks, ChemElectroChem, 2016, 3, 357
    37. A. M. Rajnicek, Z. Zhao, J. Moral-Vico, A. M. Cruz, C. D. McCaig, N. Casañ-Pastor, Adv. Healthc. Mater., 2018, 7, 1800473
    38. J.-C. Bradley, H.-M. Chen, J. Crawford, J. Eckert, K. Ernazarova, T. Kurzeja, M. Lin, M. McGee, W. Nadler, S. G. Stephens, Nature, 1997, 389, 268
    39. J. Bradley, J. Crawford, K. Ernazarova, M. McGee, S. G. Stephens, Advanced Materials, 1997, 9, 1168
    40. L. Fuentes-Rodriguez, L. Abad, L. Simonelli, D. Tonti, N. Casañ-Pastor, Journal of Physical Chemistry C, 2021, 125, 16629
    41. Y. Yang, C. Wang, S. Ashraf, G. G. Wallace, RSC Adv., 2013, 3, 5447
    42. R. Guo, J. N. Barisci, P. C. Innis, C. O. Too, G. G. Wallace, D. Zhou, Synth. Met., 2000, 114, 267
    43. X. Liu, K. J. Gilmore, S. E. Moulton, G. G. Wallace, J. Neural Eng., 2009, 6, 065002
    44. K. J. Gilmore, M. Kita, Y. Han, A. Gelmi, M. J. Higgins, S. E. Moulton, G. M. Clark, R. Kapsa, G. G. Wallace, Biomaterials, 2009, 30, 5292
    45. J. U. Khan, A. Ruland, S. Sayyar, B. Paull, J. Chen, P. C. Innis, Lab Chip, 2021, 21, 3979
    46. R. K. Perdue, D. R. Laws, D. Hlushkou, U. Tallarek, R. M. Crooks, Anal. Chem., 2009, 81, 10149
    47. L. Chen, A. Ghiasvand, S. C. Lam, E. S. Rodriguez, P. C. Innis, B. Paull, Anal. Chim. Acta, 2022, 1193, 338810
    48. D. R. Laws, D. Hlushkou, R. K. Perdue, U. Tallarek, R. M. Crooks, Anal. Chem., 2009, 81, 8923
    49. R. Chen, G. Romero, M. G. Christiansen, A. Mohr, P. Anikeeva, Science, 2015, 347, 1477
    50. A. M. Lozano, N. Lipsman, H. Bergman, P. Brown, S. Chabardes, J. W. Chang, K. Matthews, C. C. McIntyre, T. E. Schlaepfer, M. Schulder, Y. Temel, J. Volkmann, J. K. Krauss, Nat. Rev. Neurol., 2019, 15, 148
    51. C. Qin, Z. Yue, G. G. Wallace, J. Chen, ACS Appl. Bio. Mater., 2022, 5, 5041
    52. J. Moral-Vico, N. M. Carretero, E. Pérez, C. Suñol, M. Lichtenstein, N. Casañ-Pastor, Electrochim. Acta, 2013, 111, 250
    53. B. C. Thompson, J. Chen, S. E. Moulton, G. G. Wallace, Nanoscale, 2010, 2, 499
    54. A. J. Evans, B. C. Thompson, G. G. Wallace, R. Millard, S. J. O’Leary, G. M. Clark, R. K. Shepherd, R. T. Richardson, J. Biomed. Mater. Res. A, 2009, 91, 241
    55. R. T. Richardson, B. Thompson, S. Moulton, C. Newbold, M. G. Lum, A. Cameron, G. Wallace, R. Kapsa, G. Clark, S. O’Leary, Biomaterials, 2007, 28, 513
    56. B. C. Thompson, R. T. Richardson, S. E. Moulton, A. J. Evans, S. O’Leary, G. M. Clark, G. G. Wallace, Journal of Controlled Release, 2010, 141, 161
    57. C. D. O’Connell, S. Konate, C. Onofrillo, R. Kapsa, C. Baker, S. Duchi, T. Eekel, Z. Yue, S. Beirne, G. Barnsley, C. Di Bella, P. F. Choong, G. G. Wallace, Bioprinting, 2020, 19, e00087
    58. Y. Fan, Z. Yue, E. Lucarelli, G. G. Wallace, Adv. Healthc. Mater., 2020, 9, 1
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Information

Article Metrics

Article views(2525) PDF downloads(499) Citation(0)

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint