Citation: | Yongjian Zhang, Hailong Zhang. Interface engineering toward high thermal conductivity in diamond composites[J]. Materials Lab, 2023, 2(3): 230004. doi: 10.54227/mlab.20230004 |
Diamond particle reinforced metal matrix (metal/diamond) composites with high thermal conductivity and tailorable coefficient of thermal expansion are an ideal thermal management material for electronic packaging applications. Interface engineering is the key to designing metal/diamond composites due to large difference between metal and diamond in both chemical and physical nature. In this paper, we briefly summarize recent progress in the interface engineering of metal/diamond composites and give some perspectives on future development in this field.
1. | A. L. Moore, L. Shi, Mater. Today, 2014, 17, 163 |
2. | Z. He, Y. Yan, Z. Zhang, Energy, 2021, 216, 119223 |
3. | W. Liu, S. Bai, J. Materiomics, 2019, 5, 321 |
4. | E. A. Ekimov, N. V. Suetin, A. F. Popovich, V. G. Ralchenko, Diamond Relat. Mater., 2008, 17, 838 |
5. | N. Li, Y. Zhang, Y. Zhang, X. Wang, H. Wu, L.-D. Zhao, H. Zhang, Mater. Today Phys., 2022, 28, 100901 |
6. | R. Tavangar, L. Weber, Emerg. Mater. Res., 2012, 1, 67 |
7. | J. M. Molina-Jordá, Acta Mater., 2015, 96, 101 |
8. | Z. Xie, H. Guo, X. Zhang, S. Huang, Diamond Relat. Mater., 2019, 100, 107564 |
9. | L. Wang, J. Li, M. Catalano, G. Bai, N. Li, J. Dai, X. Wang, H. Zhang, J. Wang, M. J. Kim, Compos. Part A, 2018, 113, 76 |
10. | Z. Che, Q. Wang, L. Wang, J. Li, H. Zhang, Y. Zhang, X. Wang, J. Wang, M. J. Kim, Compos. Part B, 2017, 113, 285 |
11. | J. Sang, Y. Yuan, W. Yang, J. Zhu, L. Fu, D. Li, L. Zhou, J. Alloys Compd., 2022, 891, 161777 |
12. | W. Yang, G. Chen, P. Wang, J. Qiao, F. Hu, S. Liu, Q. Zhang, M. Hussain, R. Dong, G. Wu, J. Alloys Compd., 2017, 726, 623 |
13. | X.-Y. Shen, X.-B. He, S.-B. Ren, H.-M. Zhang, X.-H. Qu, J. Alloys Compd., 2012, 529, 134 |
14. | S. Ma, N. Zhao, C. Shi, E. Liu, C. He, F. He, L. Ma, Appl. Surf. Sci., 2017, 402, 372 |
15. | Y. Zhang, G. Bai, X. Zhu, J. Dai, X. Wang, J. Wang, M. J. Kim, H. Zhang, Mater. Today Comm., 2023, 34, 105357 |
16. | Y. Sun, C. Zhang, L. He, Q. Meng, B.-C. Liu, K. Gao, J. Wu, Sci. Rep., 2018, 8, 11104 |
17. | J. Li, X. Wang, Y. Qiao, Y. Zhang, Z. He, H. Zhang, Scr. Mater., 2015, 109, 72 |
18. | N. Li, L. Wang, J. Dai, X. Wang, J. Wang, M. J. Kim, H. Zhang, Diamond Relat. Mater., 2019, 100, 107565 |
19. | P. J. O’Brien, S. Shenogin, J. Liu, P. K. Chow, D. Laurencin, P. H. Mutin, M. Yamaguchi, P. Keblinski, G. Ramanath, Nature Mater., 2013, 12, 118 |
20. | M. D. Losego, M. E. Grady, N. R. Sottos, D. G. Cahill, P. V. Braun, Nature Mater., 2012, 11, 502 |
21. | Z. Liang, H.-L. Tsai, Int. J. Heat Mass Tran., 2012, 55, 2999 |
22. | T. S. English, J. C. Duda, J. L. Smoyer, D. A. Jordan, P. M. Norris, L. V. Zhigilei, Phys. Rev. B, 2012, 85, 035438 |
23. | G. Bai, Y. Zhang, J. Dai, X. Wang, H. Zhang, J. Mater. Eng. Perform., 2020, 29, 3107 |
24. | A. M. Abyzov, M. J. Kruszewski, Ł. Ciupiński, M. Mazurkiewicz, A. Michalski, K. J. Kurzydłowski, Mater. Des., 2015, 76, 97 |
25. | Y. Wu, J. Luo, Y. Wang, G. Wang, H. Wang, Z. Yang, G. Ding, Ceram. Int., 2019, 45, 13225 |
26. | B. Xu, S. Hu, S.-W. Hung, C. Shao, H. Chandra, F.-R. Chen, T. Kodama, J. Shiomi, Sci. Adv., 2021, 7, eabf8197 |
27. | Y. Zhang, Z. Wang, N. Li, Z. Che, X. Liu, G. Chang, J. Hao, J. Dai, X. Wang, F. Sun, H. Zhang, ACS Appl. Mater. Inter., 2022, 14, 35215 |
28. | G. Chang, F. Sun, L. Wang, Z. Che, X. Wang, J. Wang, M. J. Kim, H. Zhang, ACS Appl. Mater. Inter., 2019, 11, 26507 |
29. | N. Li, J. Hao, Y. Zhang, W. Wang, J. Zhao, H. Wu, X. Wang, H. Zhang, Mater., 2022, 15, 6640 |
30. | B. Xu, S.-W. Hung, S. Hu, C. Shao, R. Guo, J. Choi, T. Kodama, F.-R. Chen, J. Shiomi, Carbon, 2021, 175, 299 |
31. | X. Li, W. Yang, J. Sang, J. Zhu, L. Fu, D. Li, L. Zhou, J. Alloys Compd., 2020, 846, 156258 |
32. | C. Zeng, J. Shen, J. Zhang, Diamond Relat. Mater., 2021, 112, 108230 |
33. | H. J. Cho, J. Tam, M. Kovylina, Y. Kim, U. Erb, J. Alloys Compd., 2016, 687, 570 |
34. | L. Weber, R. Tavangar, Scr. Mater., 2007, 57, 988 |
35. | I. E. Monje, E. Louis, J. M. Molina, Compos. Part A, 2013, 48, 9 |
36. | S. Q. Jia, L. Bolzoni, T. Li, F. Yang, Carbon, 2021, 172, 390 |
37. | S. Ren, X. Shen, C. Guo, N. Liu, J. Zang, X. He, X. Qu, Compos. Sci. Technol., 2011, 71, 1550 |
38. | J. Jia, S. Bai, D. Xiong, J. Xiao, T. Yan, Mater. Chem. Phys., 2020, 252, 123422 |
39. | C. Monachon, L. Weber, J. Appl. Phys., 2013, 113, 183504 |
40. | P. E. Hopkins, M. Baraket, E. V. Barnat, T. E. Beechem, S. P. Kearney, J. C. Duda, J. T. Robinson, S. G. Walton, Nano Lett., 2012, 12, 590 |
41. | X. Wu, L. Li, W. Zhang, M. Song, W. Yang, K. Peng, Diamond Relat. Mater., 2019, 98, 107467 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
a Thermal conductivity and coefficient of thermal expansion of thermal management material; b Thermal conductivity of metal/diamond composites with diamond content;[4-18,25,30-33] c Modification strategy of metal/diamond interface.[15] Copyright 2023, Elsevier; d Vibrational density of states of Cu, W2C, and diamond.[27] Copyright 2022, American Chemical Society; e Morphological evolution mechanism of interfacial carbide in Cu/diamond composite modified by metal matrix alloying or in unmodified Al/diamond composite.[15] Copyright 2023, Elsevier.