Citation: | Qixin Chen, Mingyuan Zhao, Jing Wang, Lei Zhao. Enhanced energy storage performance in Gd/Mn co-doped AgNbO3 lead-free antiferroelectric ceramics via tape casting[J]. Materials Lab, 2023, 2(3): 230014. doi: 10.54227/mlab.20230014 |
Antiferroelectric materials are promising for applications in advanced high-power electric and electronic devices. Among them, AgNbO3-based ceramics have gained considerable attention due to their excellent energy storage performance. Herein, multiscale synergistic modulation is proposed to improve the energy storage performance of AgNbO3-based materials, whereby the tape casting process is employed to improve the breakdown strength and Gd/Mn doping is utilized to enhance the antiferroelectric stability. As a result, a high recoverable energy storage density up to 5.3 J cm-3 and energy efficiency of 67.6% are obtained in Gd/Mn co-doped AgNbO3 ceramic, which shows good temperature stability and frequency stability. These results show that the components and processes proposed in this work provide a feasible method for improving the energy storage performance of AgNbO3-based ceramics.
1. | J. W. Choi, D. Aurbach, Nat. Rev. Mater., 2016, 1, 16013 |
2. | W. J. Sun, J. Mao, S. Wang, L. Zhang, Y. H. Cheng, Front. Chem. Sci. Eng., 2021, 15, 18 |
3. | J. J. Ma, J. Zhang, J. Guo, X. J. Li, S. Guo, Y. Huan, J. Wang, S. T. Zhang, Y. J. Wang, Chem. Mater., 2022, 34, 7313 |
4. | H. Palneedi, M. Peddigari, G. T. Hwang, D. Y. Jeong, J. Ryu, Adv. Funct. Mater., 2018, 28, 1803665 |
5. | A. R. Jayakrishnan, J. P. B. Silva, K. Kamakshi, D. Dastan, V. Annapureddy, M. Pereira, K. C. Sekhar, Prog. Mater. Sci., 2023, 132, 101046 |
6. | M. Y. Zhao, J. Wang, H. Yuan, Z. H. Zheng, L. Zhao, J. Materiomics, 2023, 9, 19 |
7. | Z. M. Dang, J. K. Yuan, S. H. Yao, R. J. Liao, Adv. Mater., 2013, 25, 6334 |
8. | H. S. wang, Y. C. Liu, T. Q. Yang, S. J. Zhang, Adv. Funct. Mater., 2019, 29, 1807321 |
9. | B. Xu, J. Íñiguez, L. Bellaiche, Nat. Commun., 2017, 8, 15682 |
10. | H. Y. He, X. Lu, E. Hanc, C. Chen, H. Zhang, L. Lu, J. Mater. Chem. C, 2020, 8, 1494 |
11. | Y. Tian, L. Jin, Q. Y. Hu, K. Yu, Y. Y. Zhang, G. Viola, I. Abrahams, Z. Xu, X. Y. Wei, H. X. Yan, J. Mater. Chem. A, 2019, 7, 834 |
12. | Y. B. Fan, W. J. Wang, J. Y. Zhao, Ceram. Int., 2020, 46, 12269 |
13. | X. He, C. Chen, C. B. Li, H. R. Zeng, Z. G. Yi, Adv. Funct. Mater., 2019, 29, 1900918 |
14. | L. Chen, M. Y. Zhao, J. Wang, S. W. Zhang, F. H. Sun, L. Zhao, J. Materiomics, 2022, 8, 863 |
15. | Y. Tian, P. P. song, G. Viola, J. D. Shi, J. Li, L. Jin, Q. Y. Hu, Y. H. Xu, W. Y. Ge, Z. N. Yan, D. Zhang, N. V. Tarakina, I. Abrahams, X. Y. Wei, H. X. Yan, J. Mater. Chem. A, 2022, 10, 14747 |
16. | D. S. Fu, M. Endo, H. Taniguchi, T. Taniyama, M. Itoh, Appl. Phys. Lett., 2007, 90, 252907 |
17. | Y. Tian, L. Jin, H. F. Zhang, Z. Xu, X. Y. Wei, E. D. Politova, S. Y. Stefanovich, N. V. Tarakina, S. Abrahams, H. X. Yan, J. Mater. Chem. A, 2016, 4, 17279 |
18. | L. Zhao, Q. Liu, J. Gao, S. J. Zhang, J. F. Li, Adv. Mater., 2017, 29, 1701824 |
19. | L. Zhao, J. Gao, Q. Liu, S. J. Zhang, J. F. Li, ACS Appl. Mater. Interfaces, 2018, 10, 819 |
20. | D. Yang, J. Gao, L. Shu, Y. Liu, J. Yu, Y. Zhang, X. Wang, B. Zhang, J. F. Li, J. Mater. Chem. A, 2020, 8, 23724 |
21. | N. N. Luo, K. Han, F. Zhuo, C. Xu, G. Zhang, L. Liu, X. Chen, C. Hu, H. Zhou, Y. Wei, J. Mater. Chem. A, 2019, 7, 15450 |
22. | M. Y. Zhao, J. Wang, H. Yuan, Z. H. Zheng L. Zhao, ACS Appl. Mater. Interfaces, 2022, 14, 48926 |
23. | N. N. Luo, K. Han, L. J. Liu, B. L. Peng, X. P. Wang, C. Z. Hu, H. F. Zhou, Q. Feng, X. Y. Chen, Y. Z. Wei, J. Am. Ceram. Soc., 2019, 102, 4640 |
24. | J. Gao, Y. C. Zhang, L. Zhao, K. Y. Lee, Q. Liu, A. Studer, M. Hinterstein, S. J. Zhang, J. F. Li, J. Mater. Chem. A, 2019, 7, 2225 |
25. | J. Gao, Q. Liu, J. F. Dong, X. P. Wang, S. J. Zhang, J. F. Li, ACS. Appl. Mater. Interfaces, 2020, 12, 6097 |
26. | S. Li, H. C. Nie, G. S. Wang, C. H. Xu, N. T. Liu, M. X. Zhou, F. Cao, X. L. Dong, J. Mater. Chem. C, 2019, 7, 1551 |
27. | L. Zhao, Q. Liu, S. Zhang, J. F. Li, J. Mater. Chem. C, 2016, 4, 8380 |
28. | M. Y. Zhao, J. Wang , L. Chen, H. Yuan, M. H. Zhang, S. W. Zhang, L. Zhao, Rare Metals, 2023, 42, 495 |
29. | P. Peng, H. C. Nie, Z. Liu, W. J. Ren, F. Cao, G. S. Wang, X. L. Dong, J. Am. Ceram. Soc., 2017, 100, 1030 |
30. | R. Waser, Ferroelectrics, 1992, 133, 109 |
31. | Z. H. Yao, Z. Song, H. Hao, Z. Y. Yu, M. H. Cao, S. J. Zhang, M. T. Lanagan, H. X. Liu, Adv. Mater., 2017, 29, 1601727 |
32. | Y. Tian, P. P. Song, R. Gu, Y. H. Xu, L. Jin, T. Wang, X. Y. Wei, W. Y. Ge, Ceram. Int., 2022, 48, 32703 |
33. | G. Du, R. Liang, L. Wang, K. Li, W. Zhang, G. Wang, X. Dong, Appl. Phys. Lett., 2013, 102, 162907 |
34. | X. Fan, D. Lin, Q. Zheng, H. Sun, Y. Wan, X. Wu and L. Wu, Phys. Status Solidi A., 2012, 209, 2610 |
35. | C. H. Xu, Z. Q. Fu, Z. Liu, L. Wang, S. G. Yan, X. F. Chen, F. Cao, X. L. Dong, G. S. Wang, ACS Sustainable Chem. Eng., 2018, 6, 16151 |
36. | I. Levin, V. Krayzman, J. C. Woicik, J. Karapetrova, T. Proffen, M. G. Tucker, I. M. Reaney, Phys. Rev. B, 2009, 79, 104113 |
37. | L. Jin, F. Li, S. J. Zhang, J. Am. Ceram. Soc., 2014, 97, 1 |
38. | N. N. Luo, K. Han, F. P. Zhuo, L. J. Liu, X. Y. Chen, B. Peng, X. Wang, Q. Feng, Y. Z. Wei, J. Mater. Chem. C, 2019, 7, 4999 |
39. | K. Han, N. N. Luo, S. F. Mao, F. Zhuo, X. Chen, L. Liu, C. Hu, H. Zhou, X. Wang, Y. Z. Wei, J. Materiomics, 2019, 5, 597 |
40. | Y. Tian L. Jin, H. Zhang, Z. Xu, X. Wei, G. Viola, I. Abrahams, H. X. Yan, J. Mater. Chem. A, 2017, 5, 17525 |
41. | J. P. Shi, X. L. Chen, X. Li, J. Sun, C. C. Sun, F. H. Pang, H. F. Zhou, J. Mater. Chem. C, 2020, 8, 3784 |
42. | J. Jiang, X. J. Meng, L. Ling, S. Guo, M. Huang, J. Zhang, J. Wang, X. H. Hao, H. G. Zhu, S. T. Zhang, Energy Storage Mater., 2021, 43, 383 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
a SEM, b Weibull plots of Eb, c grain size and Eb of AN, AG2N and AG2N+Mn ceramics.
a(1) XRD patterns, a(2) enlarged (220)/(008) peaks and b Raman spectra of AN, AG2N and AG2N+Mn ceramics.
Dielectric constant and dielectric loss of AN, AG2N, and AG2N+Mn ceramics a-c as a function of temperature and d at room temperature.
a P-E loops, b Pmax, Pr, and Pmax-Pr, c EF, EA, and EF-EA, and d Wrec, η of AN, AG2N and AG2N+Mn ceramics at 10 Hz. e Wrec and η of reported AN-based ceramics.
a P-E loops, b Pr, Pmax, and Pmax-Pr, c EF, EA, and EF-EA, and d Wrec and η of AG2N+Mn ceramics during 30-170 °C under 250 kV cm−1.
a P-E loops, b Pmax, Pr, and Pmax-Pr, c EF, EA, and EF-EA, and d Wrec and η of AG2N+Mn ceramics during 50-200 Hz under 240 kV cm−1.