Haojian Su, Hongwei Zhang, Min Zhou. Recent progress of cryogenic thermoelectric materials[J]. Materials Lab, 2023, 2(3): 230015. doi: 10.54227/mlab.20230015
Citation: Haojian Su, Hongwei Zhang, Min Zhou. Recent progress of cryogenic thermoelectric materials[J]. Materials Lab, 2023, 2(3): 230015. doi: 10.54227/mlab.20230015

REVIEW ARTICLE

Recent progress of cryogenic thermoelectric materials

More Information
  • Corresponding author: mzhou@mail.ipc.ac.cn
  • §These authors contributed equally.

  • Solid-state thermoelectric (TE) materials can directly convert heat into electricity and vice versa without any mechanically moving parts or emissions. In recent years, the research of thermoelectric materials has made great progress, especially in the field of waste heat power generation at middle or high temperatures. However, the applications at cryogenic temperatures have not been paid much attention to. Here we review the recent progress of cryogenic thermoelectric materials. Some new trends, strategies and opportunities are discussed. Finally, some prospects for the future research of cryogenic thermoelectric materials are presented.


  • 加载中
  • Haojian Su is a PhD candidate at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, China. His research interests focus on the study of thermoelectric materials.
    Hongwei Zhang received his bachelor’s degree from Huazhong University of Science and Technology in 2021. He is currently pursuing his master's degree at Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. He mainly focuses on the study of thermoelectric coolers.
    Min Zhou is an associate professor at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, China. She completed her postdoctoral research at Tsinghua University in 2007. She received her PhD degree in materials science and engineering from the Shanghai Institute of Ceramics, Chinese Academy of Sciences, China, in 2005. Her main research interests focus on thermoelectric materials and their application in the field of energy conversion.
  • 1. A. Mirandola, E. Lorenzini, Heat Technol., 2016, 34, 159
    2. L. E. Bell, Science, 2008, 321, 1288
    3. A. Smith, C. R. Bahl, R. Bjark, K. Engelbrecht, K. K. Nielsen, N. Pryds, Adv. Energy Mater., 2012, 2, 1457
    4. A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, N. D. Mathhur, Science, 2006, 311, 1270
    5. L. Manosa, Nat. Mater., 2010, 9, 478
    6. C. Bechtold, C. Chluba, D. Lima, E. Quandt, Appl. Phys. Lett., 2012, 101, 091903
    7. M. Zhou, Y. S. Li, C. Zhang, S. J. Li, E. F. Wu, W. Li, L. F. Li, J. Phys. D. Appl. Phys., 2018, 51, 135303
    8. J. Mao, G. Chen, Z. F. Ren, Nat. Mater., 2021, 20, 454
    9. R. T. Littleton, Terry. M. Tritt, J. W. Kolis, D. R. Ketchum, Phys. Rev. B, 1999, 60, 13453
    10. Y. X. Qin, B. C. Qin, D. Y. Wang, C. Chang, L. D. Zhao, Energy Environ. Sci., 2022, 15, 4527
    11. W. Sun, H. Peng, Z. Chen, L. Jia, Energ. Convers. Manage., 2005, 46, 789
    12. Y. Hisazumi, Y. Yamasaki, S. Sugiyama, Appl. Energ., 1998, 60, 169
    13. T. Gao, W. Lin, A. Gu, Energ. Convers. Manage., 2011, 52, 2401
    14. M. H. Ge, Z. H. Li, Y. T. Wang, Y. L. Zhao, Y Zhu, S. X. Wang, Energy, 2021, 220, 119746
    15. M. Dutta, T. Ghosh, K. J. A. M. Biswas, APL Materials, 2020, 8, 040910
    16. K. Xia, C. Hu, C. Fu, X. Zhao, T. Zhu, Appl. Phys. Lett., 2021, 118, 140503
    17. S. I. Kim, K. H. Lee, H. A. Mum, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, S. W. Kim, Science, 2015, 348, 109
    18. H. L. Zhuang, J. Pei, B. Cai, J. F. Dong, H. H. Hu, F. H. Sun, Y. Pan, G. J. Snyder, J. F. Li, Adv. Funct. Mater., 2021, 31, 2009681
    19. M. Zhou, J. F. Li, T. Kita, J. Am. Ceram. Soc., 2008, 130, 4527
    20. K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. polychroniadis, M. G. Kanatzidis, Science, 2004, 303, 818
    21. Z. W. Zhou, J. Y. Yang, Q. H. Jiang, D. Zhang, J. W. Xin, X. Li, Y. Y. Ren, X. H, J. Am. Ceram. Soc., 2017, 100, 5723
    22. L. Hu, H. Wu, T. Zhu, C. Fu, J. He, P. Ying, X. Zhao, Adv. Energy Mater., 2015, 5, 1500411
    23. Y. S. Hor, R. J. Cava, J. Alloys Compd., 2009, 479, 368
    24. B. Lenoir, A. Dauscher, M. Cassart, Y. I. Ravich, H, Scherrer, J. Phys. Chem. Solids, 1998, 59, 129
    25. J. Mao, H. Zhu, Z. Ding, Z. Liu, Z. Ren, Science, 2019, 365, 495
    26. R. Wolfe, G. E. Smith, Appl. Phys. Lett., 1962, 1, 5
    27. A. Ektarawong, T. Bovornratanaraks, B. Alling, Phys. Rev. B, 2020, 101, 134104
    28. X. Devaux, F. Brochin, A. Dauscher, B. Lenoir, S. Scherrer, Nanostructured Materials, 1997, 8, 137
    29. B. Lenoir, M. Jp., H. Scherrer, S. Scherrer, M. Cassart, J. Phys. Chem. Solids, 1996, 57, 89
    30. S. Yang, S. Jiao, Y. Nie, T. Jiang, H. Lu, S. Liu, Y. Zhao, S. Gao, D. Wang, J. Wang, J. Mater. Sci. Technol., 2022, 126, 161
    31. H. J. Kim, K. S. Kim, J. F. Wang, M. Sasaki, N. Satoh, A. Ohnishi, M. Kitaura, M. Yang, L. Li, Phys. Rev. Lett., 2013, 111, 246603
    32. F. Liang, C. L. Kane, Phys. Rev. B, 2007, 76, 045302
    33. X. Hu, S. Gao, S. J. Poon, AIP Adv., 2019, 9, 075321
    34. G. E. Smith, R. Wolfe, J. Appl. Phys., 1962, 33, 841
    35. W. M. Yim, A. Amith, Solid State Electron., 1972, 15, 1141
    36. D. M. Brown, F. K. Heumann, J. Appl. Phys., 1964, 35, 1947
    37. N. A. Sidorenko, Cryogenics, 1992, 32, 40
    38. H. Kitagawa, H. Noguchi, T. Kiyabu, M. Itoh, Y. Noda, J. Phys. Chem. Solids, 2004, 65, 1223
    39. C. B. Thomas, H. J. Goldsmid, J. Phys. D. Appl. Phys., 1970, 3, 333
    40. H. Noguchi, H. Kitagawa, T. Kiyabu, K. Hasezaki, Y. Noda, J. Phys. Chem. Solids, 2007, 68, 91
    41. C. M. Song, R. J. Huang, M. Zhou, L. H. Gong, L. F. Li, J. Phys. Chem. Solids, 2010, 71, 999
    42. Z. Chen, Y. M. Han, M. Zhou, C. Song, R. J. Huang, Y. Zhou, L. F. Li, J. Phys. Chem. Solids, 2014, 75, 523
    43. Z. Chen, M. Zhou, R. J. Huang, Y. Zhou, L. F. Li, J. Alloy. Compd., 2012, 511, 85
    44. K. C. Kim, B. Kwon, H. J. Kim, S. H. Baek, C. Park, S. K. Kim, J. S. Kim, J. Electron. Mater., 2015, 44, 1573
    45. M. Zhou, Z. Chen, X. X. Chu, L. F. Li, J. Electron. Mater., 2012, 41, 1263
    46. R. Martin-Lopez, B. Lenoir, X. Devaux, A. Dauscher, H. Scherrer, Mat. Sci. Eng. A, 1998, 248, 147
    47. R. Martin Lopez, A. Dauscher, H. Scherrer, J. Hejtmanek, H. Kenzari, B. Lenoir, Appl. Phys. A, 1999, 68, 597
    48. T. Luo, S. Wang, L. Han, X. Tang, Intermetallics, 2013, 32, 96
    49. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn, Nature, 2001, 413, 597
    50. L. D. Hicks, T. C. Harman, M. S. Dresselhaus, Appl. Phys. Lett., 1993, 63, 3230
    51. T. Koga, X. Sun, S. B. Cronin, M. S. Dresselhaus, Mrs Proceedings, 1998, 545, 375
    52. S. Cho, A. Divenere, G. Wong, J. Ketterson, J. Meyer, Phys. Rev. B, 1999, 59, 1075484
    53. L. Li, S. Xu, G. Li, Energy Technology, 2015, 3, 825
    54. Y. Ueda, N. H. D. Khang, K. Yao, P. N. Hai, Appl. Phys. Lett., 2017, 110, 062401
    55. D. Y. Chung, L. Iordanidis, K. S. Choi, M. G. Kanatzidis, B. Korean Chem. Soc., 1998, 19, 1283.
    56. P. Larson, S. D. Mahanti, D. Y. Chung, M. G. Kanatzidis, Phys. Rev. B, 2002, 65, 045205
    57. V. A. Greanya, W. C. Tonjes, R. Liu, C. G. Olson, D. Y. Chung, M. G. Kanatzidis, Phys. Rev. B, 2002, 65, 205123
    58. D. Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, M. G. Kanatzidis, Science, 2000, 287, 1024
    59. D. Y. Chung, C. Uher, M. G. Kanatzidis, Chem. Mater., 2012, 24, 1854
    60. H. Lin, H. Chen, J. S. Yu, Y. J. Zheng, P. F. Liu, M. A. Khan, L. M. Wu, Dalton T., 2016, 45, 11931
    61. H. Tamaki, H. K. Sato, T. Kanno, Adv. Mater., 2016, 28, 10182
    62. J. W. Zhang, L. R. Song, S. H. Pedersen, H. Yin, L. T. Hung, B. B. Iversen, Nat. Commun., 2017, 8, 13901
    63. K. Imasato, S. D. Kang, S. Ohno, G. J. Snyder, Mater. Horiz., 2018, 5, 59
    64. H. J. Shang, Z. X. Liang, C. C. Xu, J. Mao, H. W. Gu, F. Z. Ding, Z. F. Ren, Research, 2020, 2020, 1219461
    65. T. Kanno, H. Tamaki, H. K. Sato, S. D. Kang, S. Ohno, K. Imasato, J. J. Kuo, G. J. Snyder, Y. Miyazaki, Appl. Phys. Lett., 2018, 112, 033903
    66. J. J. Kuo, S. D. Kang, K. Imasato, H. Tamaki, S. Ohno, T. Kanno, G. J. Snyder, Energ. Environ. Sci., 2018, 11, 429
    67. S. Ohno, K. Imasato, S. Anand, H. Tamaki, S. D. Kang, P. Gorai, H. K. Sato, E. S. Toberer, T. Kanno, G. J. Snyder, Joule, 2018, 2, 141
    68. K. Imasato, S. D. Kang, G. J. Snyder, Energ. Environ. Sci., 2019, 12, 965
    69. J. Mao, J. Shuai, S. W. Song, Y. X. Wu, R. Dally, J. W. Zhou, Z. H. Liu, J. F. Sun, Q. Y. Zhang, C. dela Cruz, S. Wilson, Y. Z. Pei, D. J. Singh, G. Chen, C. W. Chu, Z. F. Ren, P. Natl. Acad. Sci. U. S. A., 2017, 114, 10548
    70. Y. Wang, C. Fu, T. Zhu, L. Hu, G. Jiang, G. Zhao, D. Huo, X. Zhao, J. Appl. Phys., 2013, 114, 184904
    71. A. Bentien, G. K. H. Madsen, S. Johnsen, B. B. Iversen, Phys. Rev. B, 2006, 74, 90
    72. A. Herzog, M. Marutzky, J. Sichelschmidt, F. Steglich, S. Kimura, S. Johnsen, B. B. Iversen, Phys. Rev. B, 2010, 82, 245205
    73. Z. Chen, X. Ding, M. Xu, ACS Omega, 2021, 6, 22681
    74. A. Bentien, S. Johnsen, G. K. H. Madsen, B. B. Iversen, F. Steglich, Europhysics Letters, 2007, 80, 39901
    75. M. Koirala, H. Zhao, M. Pokharel, S. Chen, T. Dahal, Appl. Phys. Lett., 2013, 102, 213111
    76. P. J. Sun, N. Oeschler, S. Johnsen, B. B. Iversen, F. Steglich, Dalton T., 2010, 39, 1012
    77. H. Z. Zhao, M. Pokharel, S. Chen, B. L. Liao, K. Lukas, C. Opeil, G. Chen, Z. F. Ren, Nanotechnology, 2012, 23, 505402
    78. H. Takahashi, R. Okazaki, S. Ishiwata, H. Taniguchi, A. Okutani, M. Hagiwara, I. Terasaki, Nat. Commun., 2016, 7, 12732
    79. J. Janaki, A. Mani, A. T. Satya, T. G. Kumary, S. Kalavathi, A. Bharathi, Phys. Status Solidi B, 2012, 249, 1756
    80. H. Zhao, M. Pokheral, G. Zhu, S. Chen, K. Lukas, Q. Jie, C. Opeil, G. Chen, Z. Ren, Appl. Phys. Lett., 2011, 99, 8207
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Information

Article Metrics

Article views(2532) PDF downloads(789) Citation(0)

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint