Citation: | Haojian Su, Hongwei Zhang, Min Zhou. Recent progress of cryogenic thermoelectric materials[J]. Materials Lab, 2023, 2(3): 230015. doi: 10.54227/mlab.20230015 |
Solid-state thermoelectric (TE) materials can directly convert heat into electricity and vice versa without any mechanically moving parts or emissions. In recent years, the research of thermoelectric materials has made great progress, especially in the field of waste heat power generation at middle or high temperatures. However, the applications at cryogenic temperatures have not been paid much attention to. Here we review the recent progress of cryogenic thermoelectric materials. Some new trends, strategies and opportunities are discussed. Finally, some prospects for the future research of cryogenic thermoelectric materials are presented.
1. | A. Mirandola, E. Lorenzini, Heat Technol., 2016, 34, 159 |
2. | L. E. Bell, Science, 2008, 321, 1288 |
3. | A. Smith, C. R. Bahl, R. Bjark, K. Engelbrecht, K. K. Nielsen, N. Pryds, Adv. Energy Mater., 2012, 2, 1457 |
4. | A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, N. D. Mathhur, Science, 2006, 311, 1270 |
5. | L. Manosa, Nat. Mater., 2010, 9, 478 |
6. | C. Bechtold, C. Chluba, D. Lima, E. Quandt, Appl. Phys. Lett., 2012, 101, 091903 |
7. | M. Zhou, Y. S. Li, C. Zhang, S. J. Li, E. F. Wu, W. Li, L. F. Li, J. Phys. D. Appl. Phys., 2018, 51, 135303 |
8. | J. Mao, G. Chen, Z. F. Ren, Nat. Mater., 2021, 20, 454 |
9. | R. T. Littleton, Terry. M. Tritt, J. W. Kolis, D. R. Ketchum, Phys. Rev. B, 1999, 60, 13453 |
10. | Y. X. Qin, B. C. Qin, D. Y. Wang, C. Chang, L. D. Zhao, Energy Environ. Sci., 2022, 15, 4527 |
11. | W. Sun, H. Peng, Z. Chen, L. Jia, Energ. Convers. Manage., 2005, 46, 789 |
12. | Y. Hisazumi, Y. Yamasaki, S. Sugiyama, Appl. Energ., 1998, 60, 169 |
13. | T. Gao, W. Lin, A. Gu, Energ. Convers. Manage., 2011, 52, 2401 |
14. | M. H. Ge, Z. H. Li, Y. T. Wang, Y. L. Zhao, Y Zhu, S. X. Wang, Energy, 2021, 220, 119746 |
15. | M. Dutta, T. Ghosh, K. J. A. M. Biswas, APL Materials, 2020, 8, 040910 |
16. | K. Xia, C. Hu, C. Fu, X. Zhao, T. Zhu, Appl. Phys. Lett., 2021, 118, 140503 |
17. | S. I. Kim, K. H. Lee, H. A. Mum, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, S. W. Kim, Science, 2015, 348, 109 |
18. | H. L. Zhuang, J. Pei, B. Cai, J. F. Dong, H. H. Hu, F. H. Sun, Y. Pan, G. J. Snyder, J. F. Li, Adv. Funct. Mater., 2021, 31, 2009681 |
19. | M. Zhou, J. F. Li, T. Kita, J. Am. Ceram. Soc., 2008, 130, 4527 |
20. | K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. polychroniadis, M. G. Kanatzidis, Science, 2004, 303, 818 |
21. | Z. W. Zhou, J. Y. Yang, Q. H. Jiang, D. Zhang, J. W. Xin, X. Li, Y. Y. Ren, X. H, J. Am. Ceram. Soc., 2017, 100, 5723 |
22. | L. Hu, H. Wu, T. Zhu, C. Fu, J. He, P. Ying, X. Zhao, Adv. Energy Mater., 2015, 5, 1500411 |
23. | Y. S. Hor, R. J. Cava, J. Alloys Compd., 2009, 479, 368 |
24. | B. Lenoir, A. Dauscher, M. Cassart, Y. I. Ravich, H, Scherrer, J. Phys. Chem. Solids, 1998, 59, 129 |
25. | J. Mao, H. Zhu, Z. Ding, Z. Liu, Z. Ren, Science, 2019, 365, 495 |
26. | R. Wolfe, G. E. Smith, Appl. Phys. Lett., 1962, 1, 5 |
27. | A. Ektarawong, T. Bovornratanaraks, B. Alling, Phys. Rev. B, 2020, 101, 134104 |
28. | X. Devaux, F. Brochin, A. Dauscher, B. Lenoir, S. Scherrer, Nanostructured Materials, 1997, 8, 137 |
29. | B. Lenoir, M. Jp., H. Scherrer, S. Scherrer, M. Cassart, J. Phys. Chem. Solids, 1996, 57, 89 |
30. | S. Yang, S. Jiao, Y. Nie, T. Jiang, H. Lu, S. Liu, Y. Zhao, S. Gao, D. Wang, J. Wang, J. Mater. Sci. Technol., 2022, 126, 161 |
31. | H. J. Kim, K. S. Kim, J. F. Wang, M. Sasaki, N. Satoh, A. Ohnishi, M. Kitaura, M. Yang, L. Li, Phys. Rev. Lett., 2013, 111, 246603 |
32. | F. Liang, C. L. Kane, Phys. Rev. B, 2007, 76, 045302 |
33. | X. Hu, S. Gao, S. J. Poon, AIP Adv., 2019, 9, 075321 |
34. | G. E. Smith, R. Wolfe, J. Appl. Phys., 1962, 33, 841 |
35. | W. M. Yim, A. Amith, Solid State Electron., 1972, 15, 1141 |
36. | D. M. Brown, F. K. Heumann, J. Appl. Phys., 1964, 35, 1947 |
37. | N. A. Sidorenko, Cryogenics, 1992, 32, 40 |
38. | H. Kitagawa, H. Noguchi, T. Kiyabu, M. Itoh, Y. Noda, J. Phys. Chem. Solids, 2004, 65, 1223 |
39. | C. B. Thomas, H. J. Goldsmid, J. Phys. D. Appl. Phys., 1970, 3, 333 |
40. | H. Noguchi, H. Kitagawa, T. Kiyabu, K. Hasezaki, Y. Noda, J. Phys. Chem. Solids, 2007, 68, 91 |
41. | C. M. Song, R. J. Huang, M. Zhou, L. H. Gong, L. F. Li, J. Phys. Chem. Solids, 2010, 71, 999 |
42. | Z. Chen, Y. M. Han, M. Zhou, C. Song, R. J. Huang, Y. Zhou, L. F. Li, J. Phys. Chem. Solids, 2014, 75, 523 |
43. | Z. Chen, M. Zhou, R. J. Huang, Y. Zhou, L. F. Li, J. Alloy. Compd., 2012, 511, 85 |
44. | K. C. Kim, B. Kwon, H. J. Kim, S. H. Baek, C. Park, S. K. Kim, J. S. Kim, J. Electron. Mater., 2015, 44, 1573 |
45. | M. Zhou, Z. Chen, X. X. Chu, L. F. Li, J. Electron. Mater., 2012, 41, 1263 |
46. | R. Martin-Lopez, B. Lenoir, X. Devaux, A. Dauscher, H. Scherrer, Mat. Sci. Eng. A, 1998, 248, 147 |
47. | R. Martin Lopez, A. Dauscher, H. Scherrer, J. Hejtmanek, H. Kenzari, B. Lenoir, Appl. Phys. A, 1999, 68, 597 |
48. | T. Luo, S. Wang, L. Han, X. Tang, Intermetallics, 2013, 32, 96 |
49. | R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn, Nature, 2001, 413, 597 |
50. | L. D. Hicks, T. C. Harman, M. S. Dresselhaus, Appl. Phys. Lett., 1993, 63, 3230 |
51. | T. Koga, X. Sun, S. B. Cronin, M. S. Dresselhaus, Mrs Proceedings, 1998, 545, 375 |
52. | S. Cho, A. Divenere, G. Wong, J. Ketterson, J. Meyer, Phys. Rev. B, 1999, 59, 1075484 |
53. | L. Li, S. Xu, G. Li, Energy Technology, 2015, 3, 825 |
54. | Y. Ueda, N. H. D. Khang, K. Yao, P. N. Hai, Appl. Phys. Lett., 2017, 110, 062401 |
55. | D. Y. Chung, L. Iordanidis, K. S. Choi, M. G. Kanatzidis, B. Korean Chem. Soc., 1998, 19, 1283. |
56. | P. Larson, S. D. Mahanti, D. Y. Chung, M. G. Kanatzidis, Phys. Rev. B, 2002, 65, 045205 |
57. | V. A. Greanya, W. C. Tonjes, R. Liu, C. G. Olson, D. Y. Chung, M. G. Kanatzidis, Phys. Rev. B, 2002, 65, 205123 |
58. | D. Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, M. G. Kanatzidis, Science, 2000, 287, 1024 |
59. | D. Y. Chung, C. Uher, M. G. Kanatzidis, Chem. Mater., 2012, 24, 1854 |
60. | H. Lin, H. Chen, J. S. Yu, Y. J. Zheng, P. F. Liu, M. A. Khan, L. M. Wu, Dalton T., 2016, 45, 11931 |
61. | H. Tamaki, H. K. Sato, T. Kanno, Adv. Mater., 2016, 28, 10182 |
62. | J. W. Zhang, L. R. Song, S. H. Pedersen, H. Yin, L. T. Hung, B. B. Iversen, Nat. Commun., 2017, 8, 13901 |
63. | K. Imasato, S. D. Kang, S. Ohno, G. J. Snyder, Mater. Horiz., 2018, 5, 59 |
64. | H. J. Shang, Z. X. Liang, C. C. Xu, J. Mao, H. W. Gu, F. Z. Ding, Z. F. Ren, Research, 2020, 2020, 1219461 |
65. | T. Kanno, H. Tamaki, H. K. Sato, S. D. Kang, S. Ohno, K. Imasato, J. J. Kuo, G. J. Snyder, Y. Miyazaki, Appl. Phys. Lett., 2018, 112, 033903 |
66. | J. J. Kuo, S. D. Kang, K. Imasato, H. Tamaki, S. Ohno, T. Kanno, G. J. Snyder, Energ. Environ. Sci., 2018, 11, 429 |
67. | S. Ohno, K. Imasato, S. Anand, H. Tamaki, S. D. Kang, P. Gorai, H. K. Sato, E. S. Toberer, T. Kanno, G. J. Snyder, Joule, 2018, 2, 141 |
68. | K. Imasato, S. D. Kang, G. J. Snyder, Energ. Environ. Sci., 2019, 12, 965 |
69. | J. Mao, J. Shuai, S. W. Song, Y. X. Wu, R. Dally, J. W. Zhou, Z. H. Liu, J. F. Sun, Q. Y. Zhang, C. dela Cruz, S. Wilson, Y. Z. Pei, D. J. Singh, G. Chen, C. W. Chu, Z. F. Ren, P. Natl. Acad. Sci. U. S. A., 2017, 114, 10548 |
70. | Y. Wang, C. Fu, T. Zhu, L. Hu, G. Jiang, G. Zhao, D. Huo, X. Zhao, J. Appl. Phys., 2013, 114, 184904 |
71. | A. Bentien, G. K. H. Madsen, S. Johnsen, B. B. Iversen, Phys. Rev. B, 2006, 74, 90 |
72. | A. Herzog, M. Marutzky, J. Sichelschmidt, F. Steglich, S. Kimura, S. Johnsen, B. B. Iversen, Phys. Rev. B, 2010, 82, 245205 |
73. | Z. Chen, X. Ding, M. Xu, ACS Omega, 2021, 6, 22681 |
74. | A. Bentien, S. Johnsen, G. K. H. Madsen, B. B. Iversen, F. Steglich, Europhysics Letters, 2007, 80, 39901 |
75. | M. Koirala, H. Zhao, M. Pokharel, S. Chen, T. Dahal, Appl. Phys. Lett., 2013, 102, 213111 |
76. | P. J. Sun, N. Oeschler, S. Johnsen, B. B. Iversen, F. Steglich, Dalton T., 2010, 39, 1012 |
77. | H. Z. Zhao, M. Pokharel, S. Chen, B. L. Liao, K. Lukas, C. Opeil, G. Chen, Z. F. Ren, Nanotechnology, 2012, 23, 505402 |
78. | H. Takahashi, R. Okazaki, S. Ishiwata, H. Taniguchi, A. Okutani, M. Hagiwara, I. Terasaki, Nat. Commun., 2016, 7, 12732 |
79. | J. Janaki, A. Mani, A. T. Satya, T. G. Kumary, S. Kalavathi, A. Bharathi, Phys. Status Solidi B, 2012, 249, 1756 |
80. | H. Zhao, M. Pokheral, G. Zhu, S. Chen, K. Lukas, Q. Jie, C. Opeil, G. Chen, Z. Ren, Appl. Phys. Lett., 2011, 99, 8207 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
a A comparison of the COP values between thermoelectric systems and vapour compression refrigerators. The dotted lines are calculated by assuming that the hot-side temperature is 300 K. b Summary of the state-of-the-art cryogenic temperature thermoelectric materials[8]. Copyright 2020, Springer Nature.
a A7-type structure of bismuth, antimony and disordered solid solution of Bi1-xSbx. The purple spheres represent either Bi or Sb atoms. b A structurally ordered compound of bismuth antimonide (BiSb). The red and blue spheres denote Bi and Sb atoms, respectively[27]. Copyright 2020, American Physical Society.
Schematic diagram of band structure near Fermi surface for Bi1-xSbx alloy [31]. Copyright 2013, American Physical Society.
a Temperature dependences of figure of merit z for Bi-Sb samples prepared by different methods. b Dependence upon magnetic field of the thermoelectric figure of merit of some typical materials[46-49].
The crystal structure of CsBi4Te6 along ac-plane[59]. Copyright 2012, American Chemical Society.
a Perspective view of the crystal structure of Mg3Sb2. A unit cell is drawn with black lines. b Atom coordination with two Sb tetrahedral (red lines). Interstitial sites (0, 0, 1/2) are also shown. c Crystal structure along the c direction[61]. Copyright 2012, Wiley.
Thermoelectric properties of several typical Mg3Bi2 -based thermoelectric materials[25, 64-69].
a crystal structure of FeSb2, and the octahedron is formed by the Fe atoms and the six Sb atoms. b Density of states of FeSb2, and the Fermi level is indicated by a dashed line[71]. Copyright 2006, American Physical Society.