Citation: | Heyang Chen, Tian-Ran Wei, Xun Shi. Plastically deformable inorganic semiconductors[J]. Materials Lab, 2023, 2(3): 230008. doi: 10.54227/mlab.20230008 |
The discovery of room-temperature plasticity in inorganic semiconductors is ground-breaking. This has recultivated our knowledge on the mechanical properties of inorganic materials, offering new possibilities for material manufacturing and the application in flexible and deformable electronics. Over the past five years, new materials have been created, the understanding of plasticity deepened, and various applications demonstrated. This perspective outlines the discovery and research progress of two kinds of plastically deformable materials: Ag2S-based alloys and two-dimensional van der Waals (2D vdW) crystals, covering the deformation mechanism, screening of new ductile materials, and the synergetic optimization of electro-thermo-mechanical properties. Future study on these new-concept materials is also outlooked by proposing several key issues to be settled.
1. | D. J. Green, An Introduction to the Mechanical Properties of Ceramics, Cambridge University Press, UK, 1998. |
2. | H. Chen, T.-R. Wei, K. Zhao, P. Qiu, L. Chen, J. He, X. Shi, InfoMat, 2021, 3, 22 |
3. | X. Shi, H. Chen, F. Hao, R. Liu, T. Wang, P. Qiu, U. Burkhardt, Y. Grin, L. Chen, Nat. Mater., 2018, 17, 421 |
4. | Y. Oshima, A. Nakamura, K. Matsunaga, Science, 2018, 360, 772 |
5. | T.-R. Wei, M. Jin, Y. Wang, H. Chen, Z. Gao, K. Zhao, P. Qiu, Z. Shan, J. Jiang, R. Li, L. Chen, J. He, X. Shi, Science, 2020, 369, 542 |
6. | H. Wang, H. Wu, W. Lin, B. Zhang, X. Li, Y. Zhang, S. Fan, C. Dang, Y. Zhu, S. Zhao, X. Zhou, Y. Lu, Cell Reports Physical Science, 2022, 3, 100816 |
7. | B. Sun, D. Chen, Y. Cheng, W. Fei, D. Jiang, S. Tang, G. Zhao, J. Song, C. Hou, W. Zhang, S. Wu, Y. Yang, M. Tan, J. Zhang, D. Wei, C. Guo, W. Zhang, S. Dong, S. Du, J. Han, J. Luo, X. Zhang, Adv. Mater., 2022, 34, 2200363 |
8. | J. Liang, T. Wang, P. Qiu, S. Yang, M. Chen, H. Chen, Q. Song, K. Zhao, T.-R. Wei, D. Ren, Y.-Y. Sun, X. Shi, J. He, L. Chen, Energy Environ. Sci., 2019, 12, 2983 |
9. | T.-R. Wei, P. Qiu, K. Zhao, X. Shi, L. Chen, Adv. Mater., 2023, 35, 2110236 |
10. | S. Yang, Z. Gao, P. Qiu, J. Liang, T.-R. Wei, T. Deng, J. Xiao, X. Shi, L. Chen, Adv. Mater., 2021, 33, 2007681 |
11. | Q. Yang, S. Yang, P. Qiu, L. Peng, T.-R. Wei, Z. Zhang, X. Shi, L. Chen, Science, 2022, 377, 854 |
12. | J. Liang, X. Zhang, C. Wan, ACS Appl. Mater. Interfaces, 2022, 14, 52017 |
13. | X.-F. Zhao, S.-Q. Yang, X.-H. Wen, Q.-W. Huang, P.-F. Qiu, T.-R. Wei, H. Zhang, J.-C. Wang, D. W. Zhang, X. Shi, H.-L. Lu, Adv. Mater., 2022, 34, 2107479 |
14. | S. Jo, S. Cho, U. J. Yang, G.-S. Hwang, S. Baek, S.-H. Kim, S. H. Heo, J.-Y. Kim, M. K. Choi, J. S. Son, Adv. Mater., 2021, 33, 2100066 |
15. | Y. Zhu, J.-s. Liang, V. Mathayan, T. Nyberg, D. Primetzhofer, X. Shi, Z. Zhang, ACS Appl. Mater. Interfaces, 2022, 14, 21173 |
16. | X. Han, Science, 2020, 369, 509 |
17. | F. Cantos-Prieto, A. Falin, M. Alliati, D. Qian, R. Zhang, T. Tao, M. R. Barnett, E. J. G. Santos, L. H. Li, E. Navarro-Moratalla, Nano Lett., 2021, 21, 3379 |
18. | Z. Gao, T.-R. Wei, T. Deng, P. Qiu, W. Xu, Y. Wang, L. Chen, X. Shi, Nat. Commun., 2022, 13, 7491 |
19. | Z. Gao, Q. Yang, P. Qiu, T.-R. Wei, S. Yang, J. Xiao, L. Chen, X. Shi, Adv. Energy Mater., 2021, 11, 2100883 |
20. | G. Li, Q. An, S. I. Morozov, B. Duan, W. A. Goddard, Q. Zhang, P. Zhai, G. J. Snyder, npj Comput. Mater., 2018, 4, 1 |
21. | Y. Zhu, J.-s. Liang, X. Shi, Z. Zhang, ACS Appl. Mater. Interfaces, 2022, 14, 43482 |
22. | X. Liang, C. Chen, Acta Mater., 2021, 218, 117231 |
23. | S. He, Y. Li, L. Liu, Y. Jiang, J. Feng, W. Zhu, J. Zhang, Z. Dong, Y. Deng, J. Luo, W. Zhang, G. Chen, Sci. Adv., 2020, 6, eaaz8423 |
24. | H. Hu, Y. Wang, C. Fu, X. Zhao, T. Zhu, The Innovation, 2022, 3, 100341 |
25. | Z. Li, J. Zhang, C. Lin, Q. Fu, J. Luo, Appl. Phys. Lett., 2022, 120, 073905 |
26. | T. T. Deng, Z. Q. Gao, P. F. Qiu, T. R. Wei, J. Xiao, G. S. Wang, L. D. Chen, X. Shi, Adv. Sci., 2022, 9, 2203436 |
27. | X.-D. Wang, J. Tan, J. Ouyang, H.-M. Zhang, J.-J. Wang, Y. Wang, V. L. Deringer, J. Zhou, W. Zhang, E. Ma, Adv. Sci., 2022, 9, 2203776 |
28. | Q. Ren, Y. Lun, Y. Li, Z. Gao, J. Deng, X. Wang, G. Tang, J. Hong, J. Phys. Chem. C, 2023, 127, 16 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Progress in plastically deformable inorganic semiconductors. Top left: optical images of plastically deformable Ag2(S, Se, Te) and 2D vdW crystals.[3,10,18] Copyright 2018, Springer Nature; Copyright 2021, Wiley-VCH; Copyright 2022, Springer Nature. Top right: plastic deformation mechanisms.[3,5,18] Copyright 2018, Springer Nature; Copyright 2022, Springer Nature; Copyright 2020, AAAS. Bottom left: TE properties for ductile Ag2(S, Se, Te)-based semiconductors.[8,10,11,19] Bottom right: applications of Ag2(S, Se, Te) materials as flexible/hetero-shaped TEGs and intelligent thermal touch panel.[10,11,13] Copyright 2021, Wiley-VCH; Copyright 2022, Wiley-VCH; Copyright 2022, AAAS.