Citation: | Lijuan Yang, Cheng-Gong Han. Perspective and advances on ionic thermoelectric energy conversion[J]. Materials Lab, 2023, 2(3): 230010. doi: 10.54227/mlab.20230010 |
Ionic thermoelectric energy conversion uses ions as carriers to convert heat into electricity. The high temperature-induced voltage of several millivolts per degree Kelvin has attracted more attention to the application of self-powered sensors in IoTs. In this perspective, the thermogalvanic and thermodiffusion effects are illustrated, together with the research advances on ionic thermoelectric gels. However, the status in recent 3 years is high temperature-induced voltage but low output power. The authors propose that the synergy of two effects, electrode design and structure optimization are believed to be effective ways to improve ionic thermoelectric properties.
1. | M. Massetti, F. Jiao, A. J. Ferguson, D. Zhao, K. Wijeratne, A Würger, J. L. Blackburn, X. Crispin and S. Fabiano, Chem. Rev., 2021, 121, 12465 |
2. | J.-D. Zhang, C.-H Bai, Z.-S. Wang, X. Liu, X.-Y. Li and X.-J. Cui, Micromachines, 2023, 14, 155 |
3. | C. Chang, M.-H. Wu, D.-S. He, Y.-L. Pei, C.-F. Wu, X.-F. Wu, H.-L. Yu, F.-Y. Zhu, K.-D. Wang, Y. Chen, L. Huang, J.-F. Li, J.-Q. He and L.-D. Zhao, Science, 2018, 360, 778 |
4. | L.-Z. Su, D.-Y. Wang, S. Wang, B.-C. Qin, Y.-P. Wang, Y.-X. Qin, Y. Jin, C. Chang and L.-D. Zhao, Science, 2022, 375, 1385 |
5. | X.-L. Shi, J. Zou and Z.-G. Chen, Chem. Rev., 2020, 120, 7399 |
6. | R. Zito Jr, AIAA J, 1963, 1, 2133 |
7. | D. Zhao, H. Wang, Z. U. Khan, J. Chen, R. Gabrielsson, M. P. Jonsson, M. Berggren and X. Crispin, Energy Environ. Sci., 2016, 9, 1450 |
8. | P. Yang, K. Liu, Q. Chen, X. Mo, Y. Zhou, S. Li, G. Feng, J. Zhou, Angew. Chem. Int. Ed., 2016, 55, 12050 |
9. | J. Duan, B. Yu, K. Liu, J. Li, P. Yang, W. Xie, G. Xue, R. Liu, H. Wang, J. Zhou, Nano Energy, 2019, 57, 473 |
10. | C.-G. Han, X. Qian, Q. Li, B. Deng, Y. Zhu, Z. Han, W. Zhang, W. Wang, S.-P. Feng and G. Chen, Science, 2020, 368, 1091 |
11. | Y.-D. Zong, H.-B. Li, X. Li, J. Lou, Q.-J. Ding, Z.-Q Liu, Y.-F. Jiang and W.-J. Han, Chem. Eng. J., 2022, 433, 134550 |
12. | T. Li, X. Zhang, S. D. Lacey, R. Mi, X. Zhao, F. Jiang, J. Song, Z. Liu, G. Chen and J. Dai, Nat. Mate., 2019, 18, 608 |
13. | D. Zhao, S. Fabiano, M. Berggren, X. Crispin, Nat. Commun., 2017, 8, 14214 |
14. | H. Cheng, X. He, Z. Fan, J. Ouyang, Adv. Energy Mater., 2019, 9, 1901085 |
15. | Z. Lei, W. Gao and P. Wu, Joule, 2021, 5, 2211 |
16. | C.-H. Tian, C.-H. Bai, T. Wang, Z.-F. Yan, Z.-Y. Zhang, K. Zhuo and H.-L. Zhang, Nano Energy, 2023, 106, 108077 |
17. | C.-H. Bai, X.-B. Li, X.-J. Cui, X.-R. Yang, X.-R. Zhang, K. Yang, T. Wang and H.-L. Zhang, Nano Energy, 2022, 100, 107449 |
18. | C. Xu, Y. Sun, J. Zhang, J.-j. Zhang, W. Xu and H. Tian, Adv. Energy Mater., 2022, 12, 2201542 |
19. | D. Zhang, Y. Mao, F. Ye, P.-J. Bai, W. He and R.-J Ma, Energy Environ. Sci., 2022, 15, 2974 |
20. | Y. Han, J. Zhang, R. Hu and D.-Y. Xu, Sci. Adv., 2022, 8, eabl5318 |
21. | J.-H. Chen, C.-S. Shi, L. Wu, Y.-C. Deng, Y.-Z. Wang, L. Zhang, Q. Zhang, F. Peng, X.-M. Tao and M.-Q. Zhang, ACS Appl. Mater. Interfaces, 2022, 14, 34714 |
22. | C. Liu, Q.-K. Li, S.-J. Wang, W.-S. Liu, N. X. Fang and S.-P. Feng, Nano Energy, 2022, 92, 106738 |
23. | C. Chi, M. An, X. Qi, Y. Li, R.-H. Zhang, G.-Z. Liu, C.-J. Lin, H. Huang, H. Dang and B. Demir, Y. Wang, W.-G. Ma, B.-L. Huang and X. Zhang, Nat. Commun., 2022, 13, 221 |
24. | B. Chen, J.-S. Feng, Q.-L. Chen, S.-H. Xiao, J. Yang, X. Zhang, Z.-B. Li and T.-H. Wang, npj Flexible Electron., 2022, 6, 79 |
25. | Z.-T. Wu, B.-X. Wang, J. Li, R.-L. Wu, M.-T. Jin, H.-W. Zhao, S.-Y. Chen and H.-P. Wang, Nano Lett., 2022, 22, 8152 |
26. | S. Liu, Y.-W. Yang, S.-S. Chen, J.-Z. Zheng, D. G. Lee, D. Li, J.-L. Yang and B.-L. Huang, Nano Energy, 2022, 100, 107542 |
27. | J.-F. Zhang, W. Xue, Y.-Q. Dai, B. Li, Y.-Z. Chen, B. Liao, W. Zeng, X.-M. Tao and M. Zhang, Compos. Sci. Technol., 2022, 230, 109771 |
28. | Z. Liu, H.-L. Cheng, Q.-J. Le, R. Chen, J.-B. Li and J.-Y. Ouyang, Adv. Energy Mater., 2022, 12, 2200858 |
29. | Y.-C. Li, Q.-K. Li, X.-B. Zhang, B. Deng, C.-G. Han and W.-S. Liu, Adv. Energy Mater., 2022, 12, 2103666 |
30. | Y.-C. Li, Q. K. Li, X.-B. Zhang, J.-J. Zhang, S.-H. Wang, L.-Q. Lai, K. Zhua and W.-S. Liu, Energy Environ. Sci., 2022, 15, 5379 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
a Schematic of the thermogalvanic effect and thermodiffusion effect; b Schematic of the thermodiffusion, redox reaction, and interaction between the ions in Gelatin-KCl-FeCN4−/3− gels.[10] Copyright 2020, American Association for the Advancement of Science; Comparison of absolute ionic thermopower for the redox couple contained gels c and redox couple free gels d; e Comparison of normalized maximum output power (Pmax/(ΔT)2) for the redox couple contained gels.