Citation: | Haitao Li, Mingyang Li, Xiaoxue Jiang, Changda Zhu, Hongguang Wang, Aowei Deng, Guozhong Zang, Yongjun Gu. Enhanced piezoelectric properties for potassium sodium niobate lead-free piezoelectric ceramics prepared by microwave technology[J]. Materials Lab, 2024, 3(1): 230019. doi: 10.54227/mlab.20230019 |
Potassium-sodium niobate (Na, K)NbO3 (NKN) powder was synthesized at low temperature via microwave-assisted hydrothermal solovthermal method (MHSM). The resultant powder was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD results showed that pure (Na, K)NbO3 powder with a single perovskite structure was successfully synthesized when the concentration of mineralization exceeded 1 M. In order to reduce the volatilization of alkaline elements, NKN ceramics derived from 5M-powder were prepared in a microwave furnace. Microstructure, stoichiometry, and electrical properties of the obtained ceramics were investigated. The piezoelectric coefficient (
1. | Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature, 2004, 432, 84 |
2. | T. Q. Shao, H. L. Du, H. Ma, S. Qu, J. Wang, J. Wang, X. Wei, Z. Xu, J. Mater. Chem. A, 2017, 5, 554 |
3. | H. T. Li, Q. Cao, F. Wang, M. H. Zhang, Q. Yu, R. Y. Dong, J. Alloys Comp., 2015, 634, 163 |
4. | J. Ma, B. Wu, W. J. Wu, J. Mater. Sci.-Mater. Electron., 2017, 28, 4458 |
5. | H. T. Li, B. P. Zhang, Q. Zhang, P. P. Shang, G. L. Zhao, Int. J. Miner. Metall. Mater., 2010, 17, 340 |
6. | H. T. Li, B. P. Zhang, J. B. Wen, R. H. Xu, Q. Li, J. Inorg. Mater., 2012, 27, 385 |
7. | S. R. Kim, J. H. Yoo, J. H. Kim, Y. S. Cho, J. W. Park, Nano Energy, 2021, 79, 105445 |
8. | Y. W. Liu, Y. P. Pu, Q. Jin, Sci. Adv. Mater., 2018, 10, 257 |
9. | L. Wu, J. L. Zhang, C. L. Wang, J. C. Li, J. Appl. Phys., 2008, 103, 084116 |
10. | Y. L. Su, X. M. Chen, Z. D. Yu, J. Mater. Sci., 2017, 52, 2934 |
11. | B. P. Zhang, J. F. Li, K. Wang, H. L. Zhang, J. Am. Chem. Soc., 2006, 89, 1605 |
12. | H. T. Li, B. P. Zhang, M. Cui, W. G. Yang, N. Ma, J. F. Li, Curr. Appl. Phys., 2011, 11, 184 |
13. | H. T. Li, Q. Li, Y. F. Yan, R. H. Xu, J. Inorg. Mater., 2015, 30, 369 |
14. | Y. Lu, H. T. Li, Q. Li, B. P. Zhang, Rare metals, 2010, 29, 243 |
15. | H. Y. Park, C. W. Ahn, K. H. Cho, S. Nahm, H. G. Lee, H. W. Kang, D. H. Kim, K. S. Park, J. Am. Ceram. Soc., 2007, 90, 4066 |
16. | M. R. Bafandeh, J. S. Lee, H. S. Han, J. Electroceram., 2014, 33, 128 |
17. | A. Chowdhury, J. Bould, Y. Zhang, C. James, S. J. Milne, J. Nanopart. Res., 2010, 12, 209 |
18. | C. Pithan, Y. Shiratori, J. Dornseiffer, F. H. Haegel, A. Magrez, R. Waser, J. Cryst. Growth, 2005, 280, 191 |
19. | H. Gu, K. Zhu, X. Pang, B. Shao, J. Qiu, H. Ji, Ceram. Int., 2012, 38, 1807 |
20. | L. Bai, K. Zhu, L. Su, J. Qiu, H. Ji, Mater. Lett., 2010, 64, 77 |
21. | H. T. Li, Y. F. Yan, G. X. Wang, Q. Li, Y. J. Gu, J. Mater. Sci: Mater. Electron, 2018, 29, 746 |
22. | Y. Zhou, J. L. Yu, M. Guo, M. Zhang, Ferroelectrics, 2010, 404, 69 |
23. | M. Feizpour, H. Barzegar Bafrooei, R. Hayati, T. Ebadzadeh, Ceram. Int., 2014, 40, 871 |
24. | R. López-Juárez, R. Castañeda-Guzmán, M. E. Villafuerte-Castrejón, Ceram. Int., 2014, 40, 14757 |
25. | K. Wang, J. F. Li, N. Liu, Appl. Phys. Lett., 2008, 93, 092904 |
26. | L. Jin, F. Li, S. J. Zhang, J. Am. Chem. Soc., 2014, 97, 1 |
27. | R. Zuo, J. Rodel, R. Chen, L. Li, J. Am. Ceram. Soc., 2006, 89, 2010 |
28. | H. Evelyn, D. Matthew, D. Dragan, S. Nava, Appl. Phys. Lett., 2005, 87, 182905 |
29. | P. Kumar, P. Palei, Ceram. Int., 2010, 36, 1725 |
30. | H. Birol, D. Damjanovic, N. Setter, J. Eur. Ceram. Soc., 2006, 26, 861 |
31. | P. Zhao, B.P. Zhang, J. F. Li, Appl. Phys. Lett., 2007, 90, 242909 |
32. | H. T. Li, B. P. Zhang, P. P. Shang, Y. Fan, Q. Zhang, J. Am. Ceram. Soc., 2011, 94, 628 |
33. | V. J. Tennery, K. W. Hang, J. Appl. Phys., 1968, 39, 4749 |
34. | P. Li, Y. Huan, W. W. Yang, Acta Mater., 2019, 165, 486 |
35. | D. K. Liu, X. C. Zhang, W. B. Su, J. Alloy. Compd., 2019, 779, 800 |
36. | X. Y. Gao, Z. X. Cheng, Z. B. Chen, Nat. Commun., 2021, 12, 881 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
XRD patterns of NKN powders synthesized by MHSM with different mineralizer concentrations.
SEM images of NKN powders with different mineralizer concentrations: a 3 M; b 5 M; c 8 M.
Particle size distribution of NKN powders with different mineralizer concentrations: a 3 M; b 5 M; c 8 M.
SEM images of the fracture surface of NKN ceramics sintered at different temperatures: a
EDS spectra of NKN ceramics sintered at different temperatures: a
P-E hysteresis loops of NKN ceramics sintered at different temperatures.