Haitao Li, Mingyang Li, Xiaoxue Jiang, Changda Zhu, Hongguang Wang, Aowei Deng, Guozhong Zang, Yongjun Gu. Enhanced piezoelectric properties for potassium sodium niobate lead-free piezoelectric ceramics prepared by microwave technology[J]. Materials Lab. doi: 10.54227/mlab.20230019
Citation: Haitao Li, Mingyang Li, Xiaoxue Jiang, Changda Zhu, Hongguang Wang, Aowei Deng, Guozhong Zang, Yongjun Gu. Enhanced piezoelectric properties for potassium sodium niobate lead-free piezoelectric ceramics prepared by microwave technology[J]. Materials Lab. doi: 10.54227/mlab.20230019

RESEARCH ARTICLE

Enhanced piezoelectric properties for potassium sodium niobate lead-free piezoelectric ceramics prepared by microwave technology

More Information
  • Corresponding author: listone@163.com
  • Potassium-sodium niobate (Na, K)NbO3 (NKN) powder was synthesized at low temperature via microwave-assisted hydrothermal solovthermal method (MHSM). The resultant powder was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD results showed that pure (Na, K)NbO3 powder with a single perovskite structure was successfully synthesized when the concentration of mineralization exceeded 1 M. In order to reduce the volatilization of alkaline elements, NKN ceramics derived from 5M-powder were prepared in a microwave furnace. Microstructure, stoichiometry, and electrical properties of the obtained ceramics were investigated. The piezoelectric coefficient (d33), electromechanical coupling coefficient (kp) and remnant polarization (Pr) of the sample sintered at 1050 °C show optimal values of 132 pC/N, 38% and 26.3 µC cm-2, respectively. The results indicate that the microwave heating is a promising method for synthesizing and sintering NKN-based ceramics.


  • 加载中
  • 1. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature, 2004, 432, 84
    2. T. Q. Shao, H. L. Du, H. Ma, S. Qu, J. Wang, J. Wang, X. Wei, Z. Xu, J. Mater. Chem. A, 2017, 5, 554
    3. H. T. Li, Q. Cao, F. Wang, M. H. Zhang, Q. Yu, R. Y. Dong, J. Alloys Comp., 2015, 634, 163
    4. J. Ma, B. Wu, W. J. Wu, J. Mater. Sci.-Mater. Electron., 2017, 28, 4458
    5. H. T. Li, B. P. Zhang, Q. Zhang, P. P. Shang, G. L. Zhao, Int. J. Miner. Metall. Mater., 2010, 17, 340
    6. H. T. Li, B. P. Zhang, J. B. Wen, R. H. Xu, Q. Li, J. Inorg. Mater., 2012, 27, 385
    7. S. R. Kim, J. H. Yoo, J. H. Kim, Y. S. Cho, J. W. Park, Nano Energy, 2021, 79, 105445
    8. Y. W. Liu, Y. P. Pu, Q. Jin, Sci. Adv. Mater., 2018, 10, 257
    9. L. Wu, J. L. Zhang, C. L. Wang, J. C. Li, J. Appl. Phys., 2008, 103, 084116
    10. Y. L. Su, X. M. Chen, Z. D. Yu, J. Mater. Sci., 2017, 52, 2934
    11. B. P. Zhang, J. F. Li, K. Wang, H. L. Zhang, J. Am. Chem. Soc., 2006, 89, 1605
    12. H. T. Li, B. P. Zhang, M. Cui, W. G. Yang, N. Ma, J. F. Li, Curr. Appl. Phys., 2011, 11, 184
    13. H. T. Li, Q. Li, Y. F. Yan, R. H. Xu, J. Inorg. Mater., 2015, 30, 369
    14. Y. Lu, H. T. Li, Q. Li, B. P. Zhang, Rare metals, 2010, 29, 243
    15. H. Y. Park, C. W. Ahn, K. H. Cho, S. Nahm, H. G. Lee, H. W. Kang, D. H. Kim, K. S. Park, J. Am. Ceram. Soc., 2007, 90, 4066
    16. M. R. Bafandeh, J. S. Lee, H. S. Han, J. Electroceram., 2014, 33, 128
    17. A. Chowdhury, J. Bould, Y. Zhang, C. James, S. J. Milne, J. Nanopart. Res., 2010, 12, 209
    18. C. Pithan, Y. Shiratori, J. Dornseiffer, F. H. Haegel, A. Magrez, R. Waser, J. Cryst. Growth, 2005, 280, 191
    19. H. Gu, K. Zhu, X. Pang, B. Shao, J. Qiu, H. Ji, Ceram. Int., 2012, 38, 1807
    20. L. Bai, K. Zhu, L. Su, J. Qiu, H. Ji, Mater. Lett., 2010, 64, 77
    21. H. T. Li, Y. F. Yan, G. X. Wang, Q. Li, Y. J. Gu, J. Mater. Sci: Mater. Electron, 2018, 29, 746
    22. Y. Zhou, J. L. Yu, M. Guo, M. Zhang, Ferroelectrics, 2010, 404, 69
    23. M. Feizpour, H. Barzegar Bafrooei, R. Hayati, T. Ebadzadeh, Ceram. Int., 2014, 40, 871
    24. R. López-Juárez, R. Castañeda-Guzmán, M. E. Villafuerte-Castrejón, Ceram. Int., 2014, 40, 14757
    25. K. Wang, J. F. Li, N. Liu, Appl. Phys. Lett., 2008, 93, 092904
    26. L. Jin, F. Li, S. J. Zhang, J. Am. Chem. Soc., 2014, 97, 1
    27. R. Zuo, J. Rodel, R. Chen, L. Li, J. Am. Ceram. Soc., 2006, 89, 2010
    28. H. Evelyn, D. Matthew, D. Dragan, S. Nava, Appl. Phys. Lett., 2005, 87, 182905
    29. P. Kumar, P. Palei, Ceram. Int., 2010, 36, 1725
    30. H. Birol, D. Damjanovic, N. Setter, J. Eur. Ceram. Soc., 2006, 26, 861
    31. P. Zhao, B.P. Zhang, J. F. Li, Appl. Phys. Lett., 2007, 90, 242909
    32. H. T. Li, B. P. Zhang, P. P. Shang, Y. Fan, Q. Zhang, J. Am. Ceram. Soc., 2011, 94, 628
    33. V. J. Tennery, K. W. Hang, J. Appl. Phys., 1968, 39, 4749
    34. P. Li, Y. Huan, W. W. Yang, Acta Mater., 2019, 165, 486
    35. D. K. Liu, X. C. Zhang, W. B. Su, J. Alloy. Compd., 2019, 779, 800
    36. X. Y. Gao, Z. X. Cheng, Z. B. Chen, Nat. Commun., 2021, 12, 881
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Information

Article Metrics

Article views(949) PDF downloads(328) Citation(0)

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint