Citation: | Chunmei Tang, Fangyuan Zheng, Lei Zhao, Baoyin Yuan, Zhiyin Huang, Siyu Ye, Ning Wang. Artificial intelligence in accelerating the development of air electrode materials for proton conducting solid oxide cells[J]. Materials Lab, 2024, 3(2): 230021. doi: 10.54227/mlab.20230021 |
Proton conducting solid oxide cells (P-SOCs) operating at intermediate temperature, working in both fuel cell mode for power generation and electrolysis mode for hydrogen production, gain much attention due to their unique advantages. However, the lack of efficient air electrode is the main obstacle to get high-performance P-SOCs, moreover, developing such materials relies on the high-cost and time-waste traditional way. The application of artificial intelligence (AI) to the field of P-SOCs can solve the problems that the traditional way faced. In this perspective, we discussed the current reports relating to the development of air electrode materials of P-SOC by constructing machine learning models. Finally, the future directions of AI guiding the discovery of key materials and high-performance P-SOCs are proposed.
1. | K. Jiao, J. Xuan, Q. Du, Z. Bao, B. Xie, B. Wang, Y. Zhao, L. Fan, H. Wang, Z. Hou, S. Huo, N. P. Brandon, Y. Yin, M. D. Guiver, Nature, 2021, 595, 361 |
2. | D. Clark, H. Malerod-Fjeld, M. Budd, I. Yuste-Tirados, D. Beeaff, S. Aamodt, K. Nguyen, L. Ansaloni, T. Peters, P. K. Vestre, D. K. Pappas, M. I. Valls, S. Remiro-Buenamanana, T. Norby, T. S. Bjorheim, J. M. Serra, C. Kjolseth, Science, 2022, 376, 390 |
3. | A. Hauch, R. Kungas, P. Blennow, A. B. Hansen, J. B. Hansen, B. V. Mathiesen, M. B. Mogensen, Science, 2020, 370, 186 |
4. | Y. Sun, S. Polani, F. Luo, S. Ott, P. Strasser, F. Dionigi, Nat. Commun., 2021, 12, 5984 |
5. | W. Bian, W. Wu, B. Wang, W. Tang, M. Zhou, C. Jin, H. Ding, W. Fan, Y. Dong, J. Li, D. Ding, Nature, 2022, 604, 479 |
6. | C. Duan, J. Huang, N. Sullivan, R. O'Hayre, Appl. Phys. Rev., 2020, 7, 011314 |
7. | J. Jing, J. Pang, L. Chen, H. Zhang, Z. Lei, Z. Yang, Chem. Eng. J., 2022, 429, 132314 |
8. | F. He, Y. Zhou, T. Hu, Y. Xu, M. Hou, F. Zhu, D. Liu, H. Zhang, K. Xu, M. Liu, Y. Chen, Adv. Mater., 2023, 35, 2209469 |
9. | N. Wang, C. Tang, L. Du, R. Zhu, L. Xing, Z. Song, B. Yuan, L. Zhao, Y. Aoki, S. Ye, Adv. Energy Mater., 2022, 12, 2201882 |
10. | H. Su, Y. H. Hu, Energy Sci. Eng., 2022, 10, 1706 |
11. | R. Ren, J. Sun, G. Wang, C. Xu, J. Qiao, W. Sun, Z. Wang, K. Sun, Sep. Purif. Technol., 2022, 299, 121780 |
12. | J.-S. Shin, H. Park, K. Park, M. Saqib, M. Jo, J. H. Kim, H.-T. Lim, M. Kim, J. Kim, J.-Y. Park, J. Mater. Chem. A, 2021, 9, 607 |
13. | H. Ding, W. Wu, C. Jiang, Y. Ding, W. Bian, B. Hu, P. Singh, C. J. Orme, L. Wang, Y. Zhang, D. Ding, Nat. Commun., 2020, 11, 1907 |
14. | Y. Chen, Y. Choi, S. Yoo, Y. Ding, R. Yan, K. Pei, C. Qu, L. Zhang, I. Chang, B. Zhao, Y. Zhang, H. Chen, Y. Chen, C. Yang, B. deGlee, R. Murphy, J. Liu, M. Liu, Joule, 2018, 2, 938 |
15. | S. Choi, T. C. Davenport, S. M. Haile, Energy Environ. Sci., 2019, 12, 206 |
16. | C. M. Tang, N. Wang, R. J. Zhu, S. Kitano, H. Habazaki, Y. Aoki, J. Mater. Chem. A, 2022, 10, 15719 |
17. | Y. C. Zhou, E. Z. Liu, Y. Chen, Y. C. Liu, L. Zhang, W. L. Zhang, Z. Y. Luo, N. Kane, B. Zhao, L. Soule, Y. H. Niu, Y. Ding, H. P. Ding, D. Ding, M. L. Liu, ACS Energy Lett., 2021, 6, 1511 |
18. | J. H. Kim, J. Hong, D. K. Lim, S. Ahn, J. Kim, J. K. Kim, D. Oh, S. Jeon, S. J. Song, W. Jung, Energy Environ. Sci., 2022, 15, 1097 |
19. | L. B. Lei, J. H. Zhang, Z. H. Yuan, J. P. Liu, M. Ni, F. L. Chen, Adv. Funct. Mater., 2019, 29, 1903805 |
20. | S. Choi, C. J. Kucharczyk, Y. G. Liang, X. H. Zhang, I. Takeuchi, H. I. Ji, S. M. Haile, Nat. Energy, 2018, 3, 202 |
21. | R. Zohourian, R. Merkle, G. Raimondi, J. Maier, Adv. Funct. Mater., 2018, 28, 1801241 |
22. | J. Jing, Z. Lei, Z. Zheng, H. Wang, P. Zhang, Z. Wang, H. Xu, Z. Yang, Int. J. Hydrogen Energy, 2023, 48, 9037 |
23. | Z. Wang, Y. Han, J. Cai, A. Chen, J. Li, J. Energy. Chem., 2022, 71, 56 |
24. | X. Chen, X. Liu, X. Shen, Q. Zhang, Angew. Chem., 2021, 60, 24354 |
25. | Z. Zhang, S. Li, Y. Xiao, Y. Yang, Appl. Energy, 2019, 233-234, 930 |
26. | M. Coduri, M. Karlsson, L. Malavasi, J. Mater. Chem. A, 2022, 10, 5082 |
27. | S. Zhai, H. P. Xie, P. Cui, D. Q. Guan, J. Wang, S. Y. Zhao, B. Chen, Y. F. Song, Z. P. Shao, M. Ni, Nat. Energy, 2022, 7, 866 |
28. | K. C. Yang, J. P. Liu, Y. H. Wang, X. C. Shi, J. L. Wang, Q. Y. Lu, F. Ciucci, Z. B. Yang, J. Mater. Chem. A, 2022, 10, 23683 |
29. | S. H. Lu, Q. H. Zhou, Y. X. Ouyang, Y. L. Guo, Q. Li, J. L. Wang, Nat. Commun., 2018, 9, 3405 |
30. | K. H. Tu, H. Huang, S. Lee, W. Lee, Z. H. Sun, A. Alexander-Katz, C. A. Ross, Adv. Mater., 2020, 32, 2005713 |
31. | Y. S. Fang, Y. J. Zou, J. Xu, G. R. Chen, Y. H. Zhou, W. L. Deng, X. Zhao, M. Roustaei, T. K. Hsiai, J. Chen, Adv. Mater., 2021, 33, 2104178 |
32. | A. Y. Lu, L. G. P. Martins, P. C. Shen, Z. T. Chen, J. H. Park, M. T. Xue, J. C. Han, N. N. Mao, M. H. Chiu, T. Palacios, V. Tung, J. Kong, Adv. Mater., 2022, 34, 2202911 |
33. | N. Wang, B. Y. Yuan, C. M. Tang, L. Du, R. J. Zhu, Y. Aoki, W. B. Wang, L. X. Xing, S. Y. Ye, Adv. Mater., 2022, 34, 2203446 |
34. | J. Hyodo, K. Tsujikawa, M. Shiga, Y. Okuyama, Y. Yamazaki, ACS Energy Lett., 2021, 6, 2985 |
35. | P. Priya, N. R. Aluru, npj Comput. Mater., 2021, 7, 90 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Application of AI in P-SOCs and O-SOCs for predication of hydration ability, conductivity, polarization resistance and performance degradation.[27, 28, 33, 35] Copyright 2019, Nature; Copyright 2022, Royal Society of Chemistry; Copyright 2022, Wiley-VCH; Copyright 2021, Nature.