Citation: | Dong Liu, Ting Tang, Li-Feng Zhu. Antiferroelectric capacitor for energy storage: a review from the development and perspective[J]. Materials Lab, 2024, 3(2): 230028. doi: 10.54227/mlab.20230028 |
With the fast development of the power electronics, dielectric materials with large power densities, low loss, good temperature stability and fast charge and discharge rates are eagerly desired for the potential application in advanced pulsed power-storage system. Especially, antiferroelectric (AFE) capacitors which have been considered as a great potential for electric device applications with high energy density and output power are widely concentrated recently. To propel the development of dielectric capacitors marketization, in this view, we comprehensively summarized the development process of energy storage density and efficiency, improving strategy, raw materials cost and thermal steadily of the typical AFE capacitors, including Pb(Zr, Ti)O3, AgNbO3, (Bi, Na)TiO3, and NaNbO3 AFE systems. Moreover, the advantages and disadvantages of these AFE energy-storage ceramics are compared and discussed, which lay the foundation for the AFE energy storage capacitor early realization of marketization.
1. | F. Z. Yao, Q. Yuan, Q. Wang, H. Wang, Nanoscale, 2020, 12, 17165 |
2. | L. Qi, F. Z. Yao, Y. Liu, G. Z. Zhang, H. Wang, Q. Wang, The Annual Review of Materials Research, 2018, 48, 219 |
3. | H. Palneedi, M. Peddigari, G. Hwang, D. Jeong, J. Ryu, Adv. Funct. Mater., 2018, 28, 1803665 |
4. | G. Zhang, S. Zhang, Q. Wang, J. Materiomics., 2022, 8, 1287 |
5. | P. Gao, Z. Liu, N. Zhang, H. Wu, A. Bokov, W. Ren, Z. Ye, Chem. Mater., 2019, 31, 979 |
6. | X. K. Wei, C. L. Jia, H. C. Du, K. Roleder, J. Mayer, R. Dunin-Borkowski, Adv. Mater., 2020, 32, 1907208 |
7. | J. Li, F. Li, Z. Xu, S. Zhang, Adv. Mater., 2018, 30, 1802155 |
8. | P. Zhao, H. Wang, L. Wu, L. Chen, Z. Cai, L. Li, X. Wang, Adv. Energy Mater., 2019, 9, 1803048 |
9. | N. Liu, R. Liang, Z. Zhou, X. Dong, J. Mater. Chem. C, 2018, 6, 10211 |
10. | L. Zhu, X. Lei, L. Zhao, M, Hussain, G. Zhao, B. Zhang, Ceram. Inter., 2019, 45, 20266. |
11. | B. Luo, X. Wang, E. Tian, H. Song, H. Wang, L. Li, ACS Appl. Mater. Interfaces, 2017, 9, 19963 |
12. | S. I. Shkuratov, J. Baird, V. G. Antipov, S. Zhang, J. B. Chase, Adv. Mater., 2019, 31, 1904819 |
13. | L. Chen, N. Sun, Y. Li, Q. Zhang, L. Zhang, X. Hao, J. Am. Ceram. Soc., 2018, 101, 2313 |
14. | Q. Zhang, Y. Dan, J. Chen, Y. Lu, T. Yang, Y. He, Ceram. Int., 2017, 43, 11428 |
15. | H. Zhang, X. Chen, F. Cao, G. Wang, X. Dong, Z. Hu, T. Du, J. Am. Ceram. Soc., 2010, 93, 4015 |
16. | Y. Wang, X. Hao, J. Yang, J. Xu, D. Zhao, J. Appl. Phys., 2012, 112, 034105 |
17. | S. Jiang, L. Zhang, G. Zhang, S. Liu, J. Yi, X. Xiong, Y. Yu, J. He, Y. Zeng, Ceram. Int., 2013, 39, 5571 |
18. | S. Chen, X. Wang, T. Yang, J. Wang, J. Electroceram., 2014, 32, 307 |
19. | X. Yang, Y. Liu, C. He, H. Tailor, X. Long, J. Eur. Ceram. Soc., 2015, 35, 4173 |
20. | X. Yang, C. He, Y. Liu, X. Li, Z. Wang, S. Han, S. Pan, X. Long, Ceram. Int., 2016, 42, 10472 |
21. | L. Xu, C. He, X. Yang, Z. Wang, X. Li, H. M. Tailor, X. Long, J. Eur. Ceram. Soc., 2017, 37, 3329 |
22. | H. Wang, Y. Liu, T. Yang, S. Zhang, Adv. Funct. Mater., 2019, 29, 1807321. |
23. | K. Huang, G. Ge, F. Yan, B. Shen, J. Zhai, Adv. Electron Mater., 2020, 6, 1901366. |
24. | X. Liu, T. Yang, W. Gong, J. Mater. Chem. C, 2021, 9, 12399. |
25. | L. Chen, J. Zhou, L. Xu, J. Ding, Z. Sun, Q. Bao, X. Hao, Chem. Eng. J., 2022, 447, 137367 |
26. | X. Liu, T. Yang, B. Shen, L. Chen, ACS Appl. Energy Mater., 2023, 6, 1218 |
27. | L. Zhang, S. Jiang, Y. Zeng, M. Fu, K. Han, Q. Li, Q. Wang, G. Zhang, Ceram. Int., 2014, 40, 5455 |
28. | J. Xie, M. Yao, W. Gao, Z. Su, X. Yao, J. Eur. Ceram. Soc., 2019, 39, 1050 |
29. | G. Ge, K. Huang, S. Wu, F. Yan, X. Li, B. Shen, J. Zhai, Energy Storage Mater., 2021, 35, 114 |
30. | R. Xu, Q. Zhu, Z. Xu, Y. Feng, X. Wei, Appl. Phys. Lett., 2022, 120, 52904 |
31. | X. Meng, Y. Zhao, J. Zhu, L. Zhu, Y. Li, X, Hao, J. Eur. Ceram. Soc., 2022, 42, 6493 |
32. | X. Liu, J. Zhu, Y. Li, T. Yang, X. Hao, W. Gong, Chem. Eng. J., 2022, 446, 136729 |
33. | L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.-F. Li, S. Zhang, Prog. Mater. Sci., 2019, 102, 72 |
34. | Q. Xu, J. Xie, Z. He, L. Zhang, M. Cao, X. Huang, M. T. Lanagan, H. Hao, Z. Yao, H. Liu, J. Eur. Ceram. Soc., 2017, 37, 99 |
35. | Z. Yu, Y. Liu, M. Shen, H. Qian, F. Li, Y. Lyu, Ceram. Int., 2017, 43, 7653 |
36. | X. Zhou, H. Qi, Z. Yan, G. Xue, H. Luo, D. Zhang, ACS Appl. Mater. Interfaces, 2019, 11, 43107 |
37. | X. Qiao, F. Zhang, D. Wu, B. Chen, X. Zhao, Z. Peng, X. Ren, P. Liang, X. Chao, Z. Yang, Chem. Eng. J., 2020, 388, 124158 |
38. | L. Zhang, R. Jing, Y. Huang, Q. Hu, D. O. AliKin, V. Y. Shur, J. Gao, X. Wei, L. Zhang, G. Liu, Y. Yan, L. Jin, J. Materiomics., 2022, 8, 527 |
39. | Y. Zhang, A. Xie, J. Fu, X. Jiang, T. Li, C. Zhou, R. Zuo, ACS Appl. Mater. Interfaces, 2022, 14, 40043 |
40. | R. Kang, Z. Wang, M. Wu, S. Cheng, S. Mi, Y. Hu, L. Zhang, D. Wang, X. Lou, Nano Energy, 2023, 112, 108477 |
41. | Y. Pu, M. Yao, L. Zhang, P. Jing, J. Alloy Compd., 2016, 687, 689 |
42. | B. Hu, H. Q. Fan, N. Li, S. Gao, Z. J. Yao, Q. Li, Ceram. Int., 2018, 44, 10968 |
43. | H. Qi, R. Zuo, J. Mater. Chem. A, 2019, 7, 3971 |
44. | T. Wei, K. Liu, P. Fan, D. Lu, B. Ye, C. Zhou, H. Yang, H. Tan, D. Salamon, B. Nan, H. Zhang, Ceram. Int., 2021, 47, 3713 |
45. | J. Li, Z. Shen, X. Chen, S. Yang, W. Zhou, M. Wang, L. Wang, Q. Kou, Y. Liu, Q. Li, Z. Xu, Y. Chang, Nat. Mater., 2020, 19, 999 |
46. | D. Fu, M. Endo, H. Taniguchi, T. Taniyama, M. Itoh, Appl. Phys. Lett., 2007, 90, 252907 |
47. | L. Zhao, J. Gao, Q. Liu, S. Zhang, J.-F. Li, ACS Appl. Mater. Interfaces, 2018, 10, 819 |
48. | N. Luo, K. Han, L. Liu, B. Peng, X. Wang, C. Hu, H. Zhou, Q. Feng, X. Chen, Y. Wei, J. Am. Ceram. Soc., 2019, 102, 4640 |
49. | H. Pan, J. Ma, J. Ma, Q. Zhang, X. Liu, B. Guan, L. Gu, X. Zhang, Y.-J. Zhang, L. Li, Y. Shen, Y.-H. Lin, C.-W, Nan, Nat. Commun., 2018, 9, 1813 |
50. | H. Pan, F. Li, Y. Liu, Q. Zhang, M. Wang, S. Lan, Y. Zheng, J. Ma, L. Gu, Y. Shen, P. Yu, S. Zhang, L.-Q. Chen, Y.-H. Lin, C.-W, Nan, Science, 2019, 365, 578 |
51. | L. Zhao, Q. Liu, S. Zhang, J.-F. Li, J. Mater. Chem. C, 2016, 4, 8380 |
52. | L. Zhao, Q. Liu, J. Gao, S. Zhang, J.-F. Li, Adv. Mater., 2017, 29, 1701824 |
53. | C. Xu, Z. Fu, Z. Liu, L. Wang, S. Yan, X. Chen, F. Cao, X. Dong, G. Wang, ACS Sustain Chem. Eng., 2018, 6, 16151 |
54. | N. Luo, K. Han, F. Zhuo, C. Xu, G. Zhang, L. Liu, X. Chen, C. Hu, H. Zhou, Y. Wei, J. Mater. Chem. A, 2019, 7, 14118 |
55. | N. Luo, K. Han, M. J. Cabral, X. Liao, S. Zhang, C. Liao, G. Zhang, X. Chen, Q. Feng, J.-F. Li, Y. Wei, Nat. Commun., 2020, 11, 4824 |
56. | W. Chao, J. Gao, T. Yang, Y. Li, J. Eur. Ceram. Soc., 2021, 41, 7670 |
57. | Y. Xu, Z. Yang, K. Xu, J. Tian, D. Zhang, M. Zhan, H. Tian, X. Cai, B. Zhang, Y. Yan, L. Guo, G. Wang, L. Lin, J. Fan, T. Wang, Y. Tian, J. Alloy. Compod., 2022, 913, 165313 |
58. | L. He, Y. Yang, C. Liu, Y. Ji, X. Lou, L. Zhang, X. Ren, Acta Materialia., 2023, 249, 118826 |
59. | J. Gao, Q. Liu, J. Dong, X. Wang, S. Zhang, J.-F. Li, ACS Appl. Mater. Interfaces, 2020, 12, 6097 |
60. | K. Han, N. Luo, Y. Jing, X. Wang, B. Peng, L. Liu, C. Hu, H. Zhou, Y. Wei, X. Chen, Q. Feng, Ceram. Int., 2019, 45, 5559 |
61. | S. Mao, N. Luo, K. Han, Q. Feng, X. Chen, B. Peng, L. Liu, C. Hu, H. Zhou, F. Toyohisa, Y. Wei, J. Mater. Sci: Mater. El., 2020, 31, 7731 |
62. | S. Li, H. Nie, G. Wang, C. Xu, N. Liu, M. Zhou, F. Cao, X. Dong, J. Mater. Chem. C, 2019, 7, 1551 |
63. | L.-F. Zhu, S. Deng, L. Zhao, G. Li, Q. Wang, L. Li, Y. Yan, H. Qi, B.-P. Zhang, J. Chen, J.-F. Li, Nat. Commun., 2023, 14, 1166 |
64. | R. H. Dungan, R. D, J. Am. Ceram. Soc., 1964, 47, 73 |
65. | A. V. Ulinzheyev, O. E. Fesenko, V. G. Smotrakov, Ferroelectrics Lett., 1990, 12, 17 |
66. | A. V. Ulinzheyev, A. V. Leiderman, V. G. Smotrakov, V. Y. Topolov, O. E. Fesenko, Phys. solid state, 1997, 39, 972 |
67. | V. A. Shuvaeva, M. Y. Antipin, R. S. V. Lindeman, O. E. Fesenko, V. G. Smotrakov, Y. T. Struchkov, Ferroelectrics, 1993, 141, 307 |
68. | T. Arioka, H. Taniguchi, M. Itoh, K. Oka, R. Wang, D. Fu, Ferroelectrics, 2010, 401, 51 |
69. | H. Shimizu, K. Kobayashi, Y. Mizuno, Clive A. Randall, J. Am. Ceram. Soc., 2014, 97, 1791 |
70. | Y. Xu, W. Hong, Y. Feng, X. Tan, Appl. Phys. Lett., 2014, 104, 52903 |
71. | D. Fu, T. Arioka, H. Taniguchi, T. Taniyama, M. Itoh, Appl. Phys. Lett., 2011, 99, 012904 |
72. | H. Shimizu, H. Guo, S. E. Reyes-Lillo, Y. Mizuno, K. M. Rabe, C. A. Randall, Dalton Trans., 2015, 44, 10763 |
73. | H. Guo, H. Shimizu, Y. Mizuno, C. A. Randall, J. Appl. Phys., 2015, 118, 054102 |
74. | L. Gao, H. Guo, S. Zhang, C. A. Randall, J. Appl. Phys., 2016, 120, 204102 |
75. | J. Ye, G. Wang, X. Chen, F. Cao, X. Dong, Appl. Phys. Lett., 2019, 114, 122901 |
76. | Z. Liu, J. Lu, Y. Mao, P. Ren, H. Fan, J. Eur. Ceram. Soc., 2018, 38, 4939 |
77. | H. Qi, R. Zuo, A. Xie, A. Tian, J. Fu, Y. Zhang, S. Zhang, Adv. Funct. Mater., 2019, 29, 1903877 |
78. | A. Xie, H. Qi, R. Zuo, ACS Appl. Mater. Interfaces, 2020, 12, 19467 |
79. | J. Shi, X. Chen, X. Li, J. Sun, C. Sun, F. Pang, H. Zhou, J. Mater. Chem. C, 2020, 8, 3784 |
80. | R. Jing, L. Jin, Y. Tian, Y. Huang, Y. Lan, J. Xu, Q. Hu, H. Du, X. Wei, D. Guo, J. Gao, F. Gao, Ceram. Int., 2019, 45, 21175 |
81. | Y. Fan, Z. Zhou, R. Liang, X. Dong, J. Eur. Ceram. Soc., 2019, 39, 4770 |
82. | H. Qi, R. Zuo, A. Xie, X. Fu, D. Zhang, J. Eur. Ceram. Soc., 2019, 39, 3703 |
83. | M. Zhou, R. Liang, Z. Zhou, S. Yan, X. Dong, ACS Sustain. Chem. Eng., 2018, 6, 12755 |
84. | M. Zhou, R. Liang, Z. Zhou, S. Yan, X. Dong, J. Mater. Chem. A, 2018, 6, 17896 |
85. | M. Zhou, R. Liang, Z. Zhou, X. Dong, Sustain Energ. Fuels, 2020, 4, 1225 |
86. | N. Qu, H. Du, X. Hao, J. Mater. Chem. C, 2019, 7, 7993 |
87. | R. Shi, Y. Pu, W. Wang, X. Guo, J. Li, M. Yang, S. Zhou, J. Alloy. Compd., 2020, 815, 152356 |
88. | A. Tian, R. Zuo, H. Qi, M. Shi, J. Mater. Chem. A, 2020, 8, 8352 |
89. | J. Jiang, X. Meng, L. Li, J. Zhang, S. Guo, J. Wang, X. Hao, H. Zhu, S. Zhang, Chem. Eng. J., 2021, 422, 130130 |
90. | T. Pan, J. Zhang, D. Che, Z. Wang, J. Wang, J. Wang, Y. Wang, Appl. Phys. Lett., 2023, 122, 72902 |
91. | P. Qiao, Y. Zhang, X. Chen, M. Zhou, G. Wang, X. Dong, J. Alloy. Compd., 2019, 780, 581 |
92. | H. Yuan, X. Fan, Z. Zheng, M. Zhao, L. Zhao, K. Zhu, J. Wang, Chem. Eng. J., 2023, 456, 141023 |
93. | S. Gao, Y. Huang, Y. Jiang, M. Shen, H. Huang, S. Jiang, Y. He, Q. Zhang, Acta Materialia, 2023, 246, 118730. |
94. | M. Wang, Q. Feng, C. Luo, Y. Lan, C. Yuan, N. Luo, C. Zhou, T. Fujita, J. Xu, G. Chen, Y. Wei, ACS Appl. Mater. Interfaces, 2021, 13, 51218 |
95. | J. Liu, P. Li, C. Li, W. Bai, S. Wu, P. Zheng, J. Zhang, J. Zhai, ACS Appl. Mater. Interfaces, 2022, 14, 17662 |
96. | A. Xie, J. Fu, R. Zuo, C. Zhou, Z. Qiao, T. Li, S. Zhang, Chem. Eng. J., 2022, 429, 132534 |
97. | W. Chao, L. Tian, T. Yang, Y. Li, Z. Liu, Chem. Eng. J., 2022, 433, 133814 |
98. | Y. Zhou, S. Gao, J. Huang, M. Shen, S. Jiang, Y. He, Q. Zhang, J. Materiomics, 2023, 9, 410. |
99. | D. Feng, H. Du, H. Ran, T. Lu, S. Xia, L. Xu, Z. Wang, C. Ma, J. Solid State Chem., 2022, 310, 123081 |
100. | Y. Xu, Y. Guo, Q. Liu, Y. Yin, J. Bai, L. Lin, J. Tian, Y. Tian, J. Alloy. Compd., 2020, 821, 153260 |
101. | J. Ai, X. Chen, L. Luo, R. Zheng, L. Xu, Ceram. Int., 2022, 48, 23630 |
102. | S. Li, T. Hu, H. Nie, Z. Fu, C. Xu, F. Xu, G. Wang, X. Dong, Energy Storage Mater., 2021, 34, 417 |
103. | L.-F. Zhu, L. Zhao, Y. Yan, H. Leng, X. Li, L.-Q. Cheng, X. Xiong, S. Priya, J. Mater. Chem. A, 2021, 9, 9655 |
104. | Z. Lu, W. Bao, G. Wang, S.-K. Sun, L. Li, J. Lei, H. Yang, H. Ji, A. Feteira, D. Li, F. Xu, A. K. Kleppe, D. Wang, S.-Y. Liu, I. M. Reaney, Nano Energy, 2021, 79, 105423 |
105. | J. Gao, Y. Zhang, L. Zhao, K.-Y. Lee, Q. Liu, A. Studer, M. Hinterstein, S. Zhang, J.-F. Li, J. Mater. Chem. A, 2019, 7, 2225 |
106. | M. Shang, P. Ren, D. Ren, X. Wang, X. Lu, F. Yan, G. Zhao, Mater. Res. Bull., 2023, 157, 112008 |
107. | J. Li, L. Jin, Y. Tian, C. Chen, Y. Lan, Q. Hu, C. Li, X. Wei, H. Yan, J. Materiomics, 2022, 8, 266 |
108. | M. Zhao, J. Wang, H. Yuan, Z. Zheng, L. Zhao, J. Materiomics, 2023, 9, 19 |
109. | P. Shi, X. Wang, X. Lou, C. Zhou, Q. Liu, L. He, S. Yang, X. Zhang, J. Alloy. Compd., 2021, 877, 160162 |
110. | B. Li, Z. Yan, X. Zhou, H. Qi, V. Koval, X. Luo, H Luo, H. Yan, D. Zhang, ACS Appl. Mater. Interfaces, 2023, 15, 4246 |
111. | L. Ma, Z. Chen, Z. Che, Q. Feng, Z. Cen, F. Toyohisa, Y. Wei, C. Hu, L. Liu, N. Luo, J. Eur. Ceram. Soc., 2022, 42, 2204 |
112. | K. Han, N. Luo, S. Mao, F. Zhuo, L. Liu, B. Peng, X. Chen, C. Hu, H. Zhou, Y. Wei, J. Mater. Chem. A, 2019, 7, 26293 |
113. | L. Ma, Z. Che, C. Xu, Z. Cen, Q. Feng, X. Chen, F. Toyohisa, J.-F. Li, S. Zhang, N. Luo, J. Eur. Ceram. Soc., 2023, 43, 3228 |
114. | P. Ge, X. Tang, K. Meng, X.-X. Huang, Q.-X. Liu, Y.-P. Jiang, W.-P. Gong, T. Wang, Mater. Today Phys., 2022, 24, 100681 |
115. | K. Huang, G. Ge, H. Bai, F. Yan, X. He, Y. Shi, B. shen, J. Zhai, J. Eur. Ceram. Soc., 2021, 41, 2450 |
116. | P. Ge, X. Tang, K. Meng, X.-X. Huang, S.-F. Li, Q.-X. Liu, Y.-P. Jiang, Chem. Eng. J., 2022, 429, 132540 |
117. | X. Meng, Y. Zhao, Y. Li, X. Hao, J. Am. Ceram. Soc., 2021, 104, 2170 |
118. | G. Ge, H. Bai, Y. Shi, C. Shi, X. He, J. He, B. Shen, J. Zhai, X. Chou, J. Mater. Chem. A, 2021, 9, 11291 |
119. | Y. Wu, Y. Fan, N. Liu, P. Peng, M. Zhou, S. Yan, F. Cao, X. Dong, G. Wang, J. Mater. Chem. C, 2019, 7, 6222 |
120. | P. Ren, Z. Liu, X. Wang, Z. Duan, Y. Wan, F. Yan, G. Zhao, J. Alloy. Compd., 2018, 742, 683 |
121. | X. Wu, H. Liu, J. Chen, J. Mater. Res., 2021, 36, 1153 |
122. | Y. Pu, L. Zhang, Y. Cui, M. Chen, ACS Sustain. Chem. Eng., 2018, 6, 6102 |
123. | D. He, Y. Wang, S. Song, S. Liu, Y. Luo, Y. Deng, Compos. Sci. Technol., 2017, 151, 25 |
124. | Y. Shen, L. Wu, J. Zhao, J. Liu, L. Tang, X. Chen, H. Li, Z. Su, Y. Zhang, J. Zhai, Z. Pan, Chem. Eng. J., 2022, 439, 135762 |
125. | Q. Wang, B. Xie, Q. Zheng, M. A. Marwat, Z. Liu, P. Mao, S. Jiang, H. Zhang, Chem. Eng. J., 2023, 452, 139422 |
126. | R. Kang, Z. Wang, W. Yang, X. Zhu, L. He, Y. Gao, J. Zhao, P. Shi, Y. Zhao, P. Mao, Y. Hu, L. Zhang, X. Lou, Chem. Eng. J., 2022, 446, 137105 |
127. | B. Laubacker, K. Wang, M. Wetherington, N. Wonderling, J. V. Badding, S. E. Mohney, J. Mater Sci: Mater. Ele., 2023, 34, 741 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The application of dielectric energy storage materials in pulsed-discharge and power conditioning electronic devices.
Comparison of energy-storage properties among four typical anti-ferroelectric ceramics in recent 10 years.
a The prices of commonly used oxides. Comparison of b raw material price, c temperature stability and d energy storage performance of four typical antiferroelectric ceramics reported recently.