
Citation: | Dong Liu, Ting Tang, Li-Feng Zhu. Antiferroelectric capacitor for energy storage: a review from the development and perspective[J]. Materials Lab, 2024, 3(2): 230028. doi: 10.54227/mlab.20230028 |
With the fast development of the power electronics, dielectric materials with large power densities, low loss, good temperature stability and fast charge and discharge rates are eagerly desired for the potential application in advanced pulsed power-storage system. Especially, antiferroelectric (AFE) capacitors which have been considered as a great potential for electric device applications with high energy density and output power are widely concentrated recently. To propel the development of dielectric capacitors marketization, in this view, we comprehensively summarized the development process of energy storage density and efficiency, improving strategy, raw materials cost and thermal steadily of the typical AFE capacitors, including Pb(Zr, Ti)O3, AgNbO3, (Bi, Na)TiO3, and NaNbO3 AFE systems. Moreover, the advantages and disadvantages of these AFE energy-storage ceramics are compared and discussed, which lay the foundation for the AFE energy storage capacitor early realization of marketization.
With the rapid development of electronics industry, the demand for dielectric energy storage devices is becoming more and more urgent, such as hybrid electric vehicles, laser weapons, space vehicle power systems, and cardiac defibrillators as shown in Fig. 1[1–3], because they have fast charging/discharging speed, high power density and excellent fatigue resistance[4]. Various types of dielectric materials can be potential candidates for energy storage, including antiferroelectrics (AFEs)[5–7], relaxor ferroelectrics (RFEs)[8,9], normal ferroelectrics (FEs)[10], and linear nonpolar dielectric materials[11]. Among these dielectrics, AFE dielectrics, characterized by a double hysteresis loop, are favored for energy storage due to their relatively high maximum polarization (Pmax) and particularly low remanent polarization (Pr) compared with other types of dielectrics. In this paper, we summarized the energy storage density (Urec) and efficiency (η) of AFE dielectrics systems in recent 10 years as shown in Fig. 2, and reviewed their industrialization application potential from the properties, economics, and environment.
Lead-based AFE ceramics that possess excellent Urec and η, like (Pb,La)(Zr,Ti)O3 system[5,6,12–14], have been the mainstay energy storage materials. Even so, the Urec of lead-based AFE ceramics is just about 0.55 J cm−3 in the early days, and increases to 13.9 J cm−3 at present, along with η > 90 %. From the whole development process as shown in Fig. 2a[15–26], the improvement of energy storage performances can be summarized in the following three aspects. Firstly, increasing the electric field of AFE-FE phase transition, such as phase transition electric field of AFE-to-FE (EF) and FE-to-AFE (EA)[27]; Secondly, designing a core shell[28] or laminated composite structure[26] to improve the breakdown strength (BDS); Thirdly, building a multiple phase transition[22,29,30]. All these measures not only improve the Urec of lead-based AFE ceramics, but also make their η significantly increased. Except for above bulk ceramics, multilayer capacitors (MLCCs) technique also is a great way to achieve high Urec and η. For example, Hao et al.[31,32] achieved a variety of ultrahigh Urec > 15 J cm−3 and excellent η > 90% in lead-based MLCCs. However, with increasing environmental concerns, the adverse effect of lead oxide on the environment and human health will gain more and more attention, and the development of lead-free AFE energy storage capacitors have necessitated.
Lead-free antiferroelectric materials have attracted increasing attention for environmentally friendly energy-storage applications in recent years[33]. As one of the earliest studied lead-free energy storage ceramics Bi0.5Na0.5TiO3 (BNT)-based AFE have a series of attractive features, including relatively large and tunable spontaneous polarization and high Curie temperature, which enables BNT to maintain large polarization over a wide temperature range. Yet, the Urec of pure BNT ceramic is limited because of their high Pr and relatively low BDS. Therefore, from 2011 to 2020, researchers have been working on reducing the Pr and increasing the BDS by increasing relaxor behavior and decreasing the grain size [34–37]. Especially the strategies, such as defect engineering,[38] field-induced structure transition[39], multiscale polymorphic domains[41], were adopted in recent years, making Urec and η of BNT system markedly increased as shown in Fig. 2b[35,38–44]. Besides, the feature of thin dielectric layer thickness also makes BNT based MLCCs possess an ultrahigh BDS and Urec, especially for the <111>-textured Na0.5Bi0.5TiO3-Sr0.7Bi0.2TiO3 (NBT-SBT) MLCCs, which possess an ultrahigh BDS ~ 103 MV m−1 and Urec~21.5 J cm−3 because it has a greatly low tensile electro-strain[45]. However, it is still not mature to be used to marketization, due to the complicated chemistry structure and high process cost for the texture.
The characteristic of double P-E hysteresis loops for AgNbO3 (AN) was first reported in 2007, suggesting the practical possibility of its application in energy storage[46]. However, the Urec of pure AN ceramic is only about 2 J cm−3 [47,48], far lower than that of lead-based AFE systems [45,49,50]. The main reasons are that there have a non-zero Pr value and poor breakdown strength (BDS) at room temperature for pure AN ceramic. Enormous efforts [51–58] have been made as to solve these questions as following three aspects. One is using oxide dopants for compositional modification to suppress the ferroelectricity characteristic and boost the AFE one. Typical examples include AN+0.1wt%MnO2 [51] and AN+0.1wt%WO3[47] systems, where the Urec reaches 2.5 J cm−3 and 3.3 J cm−3, respectively. Another is ion substitutions, e.g., replacement of Ag+ by La3+[48], Sm3+[59], Ba2+[60], Lu3+[61], Gd3+[62], etc., and/or Nb5+ by Ta5+ [52]. The Urec can be effectively increased to 3.2 J cm−3 in Ag1-3xLaxNbO3 system at x=0.02[48], 4.5 J·cm−3 in Ag1−3xSmxNbO3 system at x=0.02[59], 2.3 J cm−3 in Ag1-2xBaxNbO3 system at x=0.02[60], and 4.2 J cm−3 in Ag(Nb1-xTax)O3 system at x=0.15[52], and so on. Reducing the thickness of the dielectric layer is the other efficacious strategy to enhance the BDS and Urec of the AN system. For example, Zhu et al.[63] indicates that an ultrahigh Urec > 14 J cm−3 and excellent η > 85 % were achieved in Sm0.05Ag0.85Nb0.7Ta0.3 MLCCs. All these results suggest that AN AFE materials have a great application potential in pulsed-discharge and power conditioning electronic devices. However, it is difficult to meet the low-cost market requirement because of its high price for raw materials in AN system.
Sodium niobate (NaNbO3, NN) system has also been attracted intensive interest because it has similar with AN system’s AFE perovskite structure. Different with the AN system, lead-free NN AFE ceramics has a raw material with low cost, simple sintering process, high band gap, and so on, which was considered the most promising dielectric capacitors. However, it is difficult to get double P-E hysteresis loops at room temperature, because its metastable FE phase (P21ma) and AFE phase (Pbma) can coexist at room temperature and the electric field induced FE phase can still be preserved after the electric field is removed, exhibiting a ferroelectric P-E hysteresis loop[64–71]. An idea which was to stabilize the antiferroelectric phase and exploits its potential for AFE energy storage was achieved in NaNbO3-CaZrO3[72,73], NaNbO3-CaHfO3[74], and NaNbO3-CaSnO3[75] systems, and so on with applying the strategy of reducing the tolerance factor and average B-site polarization. However, their Urec are still very low because of low BDS and large Pr. For example, the Urec and η of AFE NaNbO3-CaZrO3 system are just about 0.55 J cm−3 and 63% [76]. To further improve the Urec and η, many of the strategies were adopted, such as breaking long-range ferroelectric order which is the benefit to build relaxation characteristics and improve BDS, decreasing the grain size or reducing the dielectric properties to enhance the breakdown field, and so on [77–87]. The Urec and η of NN-based ceramics have gotten an obviously improvement as shown in Fig. 2d [76–79,84,88–90]. For example Qi et al.[77] have reported that an 0.76NaNbO3-0.24(Bi0.5Na0.5)TiO3 relaxor antiferroelectric (AFE) ceramic was designed, which shown an ultrahigh energy-storage density Urec = 12.2 J cm−3, which is higher that of other lead-free system and most of lead ceramic. Xie et al.[78] have shown that the fine grain for 0.83NaNbO3-0.17SrTiO3 ceramics prepared by the two-step sintering method is the benefit to improve the Urec and η, which are 1.60 J cm−3 and 50%, respectively. Besides, Shi et al.[48] have reported that a PC-phase 0.78NN-0.22Bi(Mg2/3Ta1/3)O3 ceramics has ultrahigh breakdown field about 627 kV cm−1, which conduce to achieving high Ure= 5.01 J cm−3. Although the Urec and η of NN-based ceramics have achieved a big breakthrough, they still have some shortcomings, such as the volatilization of Na ions at high temperature, complex phase transitions and sample poor stability, which is not conducive to its practical application.
Except the Urec and η, the cost of raw materials for dielectric capacitors is also another critical factor in whether it can be used to industrialization application. Herein, the prices of main four typical antiferroelectric raw materials (data from McLean and Aladdin website) are listed in Fig. 3a. Ag2O and HfO2 are the most expensive than others in these raw materials, which lead to the AgNbO3-based and PbHfO3-based AFE ceramics exhibited high raw material cost as shown in Fig. 3b [22–24,32,37,40,43,55,56,77,91–95] that is not conducive to their practical application. Besides, the temperature stability is also the crucial parameters to make sure the practical application of dielectric capacitor. The temperature stability of Bi0.5Na0.5TiO3-based and AgNbO3-based systems is better than that of NaNbO3-based and Pb-based capacitors as shown in Fig. 3c [30,40,58,92,94,96,97]. This result suggests that Bi0.5Na0.5TiO3-based and AgNbO3-based ceramics can be used in more complex environments conditions. Fig. 3d presents the comparison of Urec and η of these typical AFE ceramics [19–24,26,27,29,30,35,37,39,40,48,54–56,59,77,88–90,92,94,98–127]. The Pb-based capacitor possesses the highest Urec than others, and an excellent η. In addition, the Urec and η of Bi0.5Na0.5TiO3-based and NaNbO3 ceramics are higher than that of AgNbO3-based systems.
To meet the practical applications, the energy storage capacitors are needed to possess not only the high Urec and η values, but also the excellent temperature stability and the low cost as well as environment friendly, and so on. The advantages and disadvantages of four typic antiferroelectric systems were shown in Table 1. Although the Pb-based AFE capacitors have a significant advantage in Urec and η, its widespread adoption will be restricted because the hazardous element exists. In addition, AgNbO3-based ceramic has an ultrahigh BDS, high Urec and η, as well as excellent temperature stability, but it is also difficult to be used to marketization due to high cost for raw materials. However, for NaNbO3-based and Bi0.5Na0.5TiO3-based AFE systems, due to low cost for the raw materials, eco-friendly, high Urec > 10 J cm−3 and η > 85 %, as well as excellent temperature stability, they have a great potential in pulsed-discharge and power conditioning electronic devices as the energy storage capacitors.
Pb-based | Bi0.5Na0.5TiO3-based | AgNbO3-based | NaNbO3-based | |
Urec | excellent | poor | well | well |
η | well | excellent | poor | well |
Materials price | low | low | high | midium |
Human health | poor | excellent | excellent | well |
This work was financially supported by National Natural Science Foundation of China (No.52272104, and
The authors declare no conflict of interest.
The manuscript was drafted by Dong Liu and revised by Ting Tang and Prof. Li-Feng Zhu. All authors had approved the final version of the manuscript.
1. | F. Z. Yao, Q. Yuan, Q. Wang, H. Wang, Nanoscale, 2020, 12, 17165 |
2. | L. Qi, F. Z. Yao, Y. Liu, G. Z. Zhang, H. Wang, Q. Wang, The Annual Review of Materials Research, 2018, 48, 219 |
3. | H. Palneedi, M. Peddigari, G. Hwang, D. Jeong, J. Ryu, Adv. Funct. Mater., 2018, 28, 1803665 |
4. | G. Zhang, S. Zhang, Q. Wang, J. Materiomics., 2022, 8, 1287 |
5. | P. Gao, Z. Liu, N. Zhang, H. Wu, A. Bokov, W. Ren, Z. Ye, Chem. Mater., 2019, 31, 979 |
6. | X. K. Wei, C. L. Jia, H. C. Du, K. Roleder, J. Mayer, R. Dunin-Borkowski, Adv. Mater., 2020, 32, 1907208 |
7. | J. Li, F. Li, Z. Xu, S. Zhang, Adv. Mater., 2018, 30, 1802155 |
8. | P. Zhao, H. Wang, L. Wu, L. Chen, Z. Cai, L. Li, X. Wang, Adv. Energy Mater., 2019, 9, 1803048 |
9. | N. Liu, R. Liang, Z. Zhou, X. Dong, J. Mater. Chem. C, 2018, 6, 10211 |
10. | L. Zhu, X. Lei, L. Zhao, M, Hussain, G. Zhao, B. Zhang, Ceram. Inter., 2019, 45, 20266. |
11. | B. Luo, X. Wang, E. Tian, H. Song, H. Wang, L. Li, ACS Appl. Mater. Interfaces, 2017, 9, 19963 |
12. | S. I. Shkuratov, J. Baird, V. G. Antipov, S. Zhang, J. B. Chase, Adv. Mater., 2019, 31, 1904819 |
13. | L. Chen, N. Sun, Y. Li, Q. Zhang, L. Zhang, X. Hao, J. Am. Ceram. Soc., 2018, 101, 2313 |
14. | Q. Zhang, Y. Dan, J. Chen, Y. Lu, T. Yang, Y. He, Ceram. Int., 2017, 43, 11428 |
15. | H. Zhang, X. Chen, F. Cao, G. Wang, X. Dong, Z. Hu, T. Du, J. Am. Ceram. Soc., 2010, 93, 4015 |
16. | Y. Wang, X. Hao, J. Yang, J. Xu, D. Zhao, J. Appl. Phys., 2012, 112, 034105 |
17. | S. Jiang, L. Zhang, G. Zhang, S. Liu, J. Yi, X. Xiong, Y. Yu, J. He, Y. Zeng, Ceram. Int., 2013, 39, 5571 |
18. | S. Chen, X. Wang, T. Yang, J. Wang, J. Electroceram., 2014, 32, 307 |
19. | X. Yang, Y. Liu, C. He, H. Tailor, X. Long, J. Eur. Ceram. Soc., 2015, 35, 4173 |
20. | X. Yang, C. He, Y. Liu, X. Li, Z. Wang, S. Han, S. Pan, X. Long, Ceram. Int., 2016, 42, 10472 |
21. | L. Xu, C. He, X. Yang, Z. Wang, X. Li, H. M. Tailor, X. Long, J. Eur. Ceram. Soc., 2017, 37, 3329 |
22. | H. Wang, Y. Liu, T. Yang, S. Zhang, Adv. Funct. Mater., 2019, 29, 1807321. |
23. | K. Huang, G. Ge, F. Yan, B. Shen, J. Zhai, Adv. Electron Mater., 2020, 6, 1901366. |
24. | X. Liu, T. Yang, W. Gong, J. Mater. Chem. C, 2021, 9, 12399. |
25. | L. Chen, J. Zhou, L. Xu, J. Ding, Z. Sun, Q. Bao, X. Hao, Chem. Eng. J., 2022, 447, 137367 |
26. | X. Liu, T. Yang, B. Shen, L. Chen, ACS Appl. Energy Mater., 2023, 6, 1218 |
27. | L. Zhang, S. Jiang, Y. Zeng, M. Fu, K. Han, Q. Li, Q. Wang, G. Zhang, Ceram. Int., 2014, 40, 5455 |
28. | J. Xie, M. Yao, W. Gao, Z. Su, X. Yao, J. Eur. Ceram. Soc., 2019, 39, 1050 |
29. | G. Ge, K. Huang, S. Wu, F. Yan, X. Li, B. Shen, J. Zhai, Energy Storage Mater., 2021, 35, 114 |
30. | R. Xu, Q. Zhu, Z. Xu, Y. Feng, X. Wei, Appl. Phys. Lett., 2022, 120, 52904 |
31. | X. Meng, Y. Zhao, J. Zhu, L. Zhu, Y. Li, X, Hao, J. Eur. Ceram. Soc., 2022, 42, 6493 |
32. | X. Liu, J. Zhu, Y. Li, T. Yang, X. Hao, W. Gong, Chem. Eng. J., 2022, 446, 136729 |
33. | L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.-F. Li, S. Zhang, Prog. Mater. Sci., 2019, 102, 72 |
34. | Q. Xu, J. Xie, Z. He, L. Zhang, M. Cao, X. Huang, M. T. Lanagan, H. Hao, Z. Yao, H. Liu, J. Eur. Ceram. Soc., 2017, 37, 99 |
35. | Z. Yu, Y. Liu, M. Shen, H. Qian, F. Li, Y. Lyu, Ceram. Int., 2017, 43, 7653 |
36. | X. Zhou, H. Qi, Z. Yan, G. Xue, H. Luo, D. Zhang, ACS Appl. Mater. Interfaces, 2019, 11, 43107 |
37. | X. Qiao, F. Zhang, D. Wu, B. Chen, X. Zhao, Z. Peng, X. Ren, P. Liang, X. Chao, Z. Yang, Chem. Eng. J., 2020, 388, 124158 |
38. | L. Zhang, R. Jing, Y. Huang, Q. Hu, D. O. AliKin, V. Y. Shur, J. Gao, X. Wei, L. Zhang, G. Liu, Y. Yan, L. Jin, J. Materiomics., 2022, 8, 527 |
39. | Y. Zhang, A. Xie, J. Fu, X. Jiang, T. Li, C. Zhou, R. Zuo, ACS Appl. Mater. Interfaces, 2022, 14, 40043 |
40. | R. Kang, Z. Wang, M. Wu, S. Cheng, S. Mi, Y. Hu, L. Zhang, D. Wang, X. Lou, Nano Energy, 2023, 112, 108477 |
41. | Y. Pu, M. Yao, L. Zhang, P. Jing, J. Alloy Compd., 2016, 687, 689 |
42. | B. Hu, H. Q. Fan, N. Li, S. Gao, Z. J. Yao, Q. Li, Ceram. Int., 2018, 44, 10968 |
43. | H. Qi, R. Zuo, J. Mater. Chem. A, 2019, 7, 3971 |
44. | T. Wei, K. Liu, P. Fan, D. Lu, B. Ye, C. Zhou, H. Yang, H. Tan, D. Salamon, B. Nan, H. Zhang, Ceram. Int., 2021, 47, 3713 |
45. | J. Li, Z. Shen, X. Chen, S. Yang, W. Zhou, M. Wang, L. Wang, Q. Kou, Y. Liu, Q. Li, Z. Xu, Y. Chang, Nat. Mater., 2020, 19, 999 |
46. | D. Fu, M. Endo, H. Taniguchi, T. Taniyama, M. Itoh, Appl. Phys. Lett., 2007, 90, 252907 |
47. | L. Zhao, J. Gao, Q. Liu, S. Zhang, J.-F. Li, ACS Appl. Mater. Interfaces, 2018, 10, 819 |
48. | N. Luo, K. Han, L. Liu, B. Peng, X. Wang, C. Hu, H. Zhou, Q. Feng, X. Chen, Y. Wei, J. Am. Ceram. Soc., 2019, 102, 4640 |
49. | H. Pan, J. Ma, J. Ma, Q. Zhang, X. Liu, B. Guan, L. Gu, X. Zhang, Y.-J. Zhang, L. Li, Y. Shen, Y.-H. Lin, C.-W, Nan, Nat. Commun., 2018, 9, 1813 |
50. | H. Pan, F. Li, Y. Liu, Q. Zhang, M. Wang, S. Lan, Y. Zheng, J. Ma, L. Gu, Y. Shen, P. Yu, S. Zhang, L.-Q. Chen, Y.-H. Lin, C.-W, Nan, Science, 2019, 365, 578 |
51. | L. Zhao, Q. Liu, S. Zhang, J.-F. Li, J. Mater. Chem. C, 2016, 4, 8380 |
52. | L. Zhao, Q. Liu, J. Gao, S. Zhang, J.-F. Li, Adv. Mater., 2017, 29, 1701824 |
53. | C. Xu, Z. Fu, Z. Liu, L. Wang, S. Yan, X. Chen, F. Cao, X. Dong, G. Wang, ACS Sustain Chem. Eng., 2018, 6, 16151 |
54. | N. Luo, K. Han, F. Zhuo, C. Xu, G. Zhang, L. Liu, X. Chen, C. Hu, H. Zhou, Y. Wei, J. Mater. Chem. A, 2019, 7, 14118 |
55. | N. Luo, K. Han, M. J. Cabral, X. Liao, S. Zhang, C. Liao, G. Zhang, X. Chen, Q. Feng, J.-F. Li, Y. Wei, Nat. Commun., 2020, 11, 4824 |
56. | W. Chao, J. Gao, T. Yang, Y. Li, J. Eur. Ceram. Soc., 2021, 41, 7670 |
57. | Y. Xu, Z. Yang, K. Xu, J. Tian, D. Zhang, M. Zhan, H. Tian, X. Cai, B. Zhang, Y. Yan, L. Guo, G. Wang, L. Lin, J. Fan, T. Wang, Y. Tian, J. Alloy. Compod., 2022, 913, 165313 |
58. | L. He, Y. Yang, C. Liu, Y. Ji, X. Lou, L. Zhang, X. Ren, Acta Materialia., 2023, 249, 118826 |
59. | J. Gao, Q. Liu, J. Dong, X. Wang, S. Zhang, J.-F. Li, ACS Appl. Mater. Interfaces, 2020, 12, 6097 |
60. | K. Han, N. Luo, Y. Jing, X. Wang, B. Peng, L. Liu, C. Hu, H. Zhou, Y. Wei, X. Chen, Q. Feng, Ceram. Int., 2019, 45, 5559 |
61. | S. Mao, N. Luo, K. Han, Q. Feng, X. Chen, B. Peng, L. Liu, C. Hu, H. Zhou, F. Toyohisa, Y. Wei, J. Mater. Sci: Mater. El., 2020, 31, 7731 |
62. | S. Li, H. Nie, G. Wang, C. Xu, N. Liu, M. Zhou, F. Cao, X. Dong, J. Mater. Chem. C, 2019, 7, 1551 |
63. | L.-F. Zhu, S. Deng, L. Zhao, G. Li, Q. Wang, L. Li, Y. Yan, H. Qi, B.-P. Zhang, J. Chen, J.-F. Li, Nat. Commun., 2023, 14, 1166 |
64. | R. H. Dungan, R. D, J. Am. Ceram. Soc., 1964, 47, 73 |
65. | A. V. Ulinzheyev, O. E. Fesenko, V. G. Smotrakov, Ferroelectrics Lett., 1990, 12, 17 |
66. | A. V. Ulinzheyev, A. V. Leiderman, V. G. Smotrakov, V. Y. Topolov, O. E. Fesenko, Phys. solid state, 1997, 39, 972 |
67. | V. A. Shuvaeva, M. Y. Antipin, R. S. V. Lindeman, O. E. Fesenko, V. G. Smotrakov, Y. T. Struchkov, Ferroelectrics, 1993, 141, 307 |
68. | T. Arioka, H. Taniguchi, M. Itoh, K. Oka, R. Wang, D. Fu, Ferroelectrics, 2010, 401, 51 |
69. | H. Shimizu, K. Kobayashi, Y. Mizuno, Clive A. Randall, J. Am. Ceram. Soc., 2014, 97, 1791 |
70. | Y. Xu, W. Hong, Y. Feng, X. Tan, Appl. Phys. Lett., 2014, 104, 52903 |
71. | D. Fu, T. Arioka, H. Taniguchi, T. Taniyama, M. Itoh, Appl. Phys. Lett., 2011, 99, 012904 |
72. | H. Shimizu, H. Guo, S. E. Reyes-Lillo, Y. Mizuno, K. M. Rabe, C. A. Randall, Dalton Trans., 2015, 44, 10763 |
73. | H. Guo, H. Shimizu, Y. Mizuno, C. A. Randall, J. Appl. Phys., 2015, 118, 054102 |
74. | L. Gao, H. Guo, S. Zhang, C. A. Randall, J. Appl. Phys., 2016, 120, 204102 |
75. | J. Ye, G. Wang, X. Chen, F. Cao, X. Dong, Appl. Phys. Lett., 2019, 114, 122901 |
76. | Z. Liu, J. Lu, Y. Mao, P. Ren, H. Fan, J. Eur. Ceram. Soc., 2018, 38, 4939 |
77. | H. Qi, R. Zuo, A. Xie, A. Tian, J. Fu, Y. Zhang, S. Zhang, Adv. Funct. Mater., 2019, 29, 1903877 |
78. | A. Xie, H. Qi, R. Zuo, ACS Appl. Mater. Interfaces, 2020, 12, 19467 |
79. | J. Shi, X. Chen, X. Li, J. Sun, C. Sun, F. Pang, H. Zhou, J. Mater. Chem. C, 2020, 8, 3784 |
80. | R. Jing, L. Jin, Y. Tian, Y. Huang, Y. Lan, J. Xu, Q. Hu, H. Du, X. Wei, D. Guo, J. Gao, F. Gao, Ceram. Int., 2019, 45, 21175 |
81. | Y. Fan, Z. Zhou, R. Liang, X. Dong, J. Eur. Ceram. Soc., 2019, 39, 4770 |
82. | H. Qi, R. Zuo, A. Xie, X. Fu, D. Zhang, J. Eur. Ceram. Soc., 2019, 39, 3703 |
83. | M. Zhou, R. Liang, Z. Zhou, S. Yan, X. Dong, ACS Sustain. Chem. Eng., 2018, 6, 12755 |
84. | M. Zhou, R. Liang, Z. Zhou, S. Yan, X. Dong, J. Mater. Chem. A, 2018, 6, 17896 |
85. | M. Zhou, R. Liang, Z. Zhou, X. Dong, Sustain Energ. Fuels, 2020, 4, 1225 |
86. | N. Qu, H. Du, X. Hao, J. Mater. Chem. C, 2019, 7, 7993 |
87. | R. Shi, Y. Pu, W. Wang, X. Guo, J. Li, M. Yang, S. Zhou, J. Alloy. Compd., 2020, 815, 152356 |
88. | A. Tian, R. Zuo, H. Qi, M. Shi, J. Mater. Chem. A, 2020, 8, 8352 |
89. | J. Jiang, X. Meng, L. Li, J. Zhang, S. Guo, J. Wang, X. Hao, H. Zhu, S. Zhang, Chem. Eng. J., 2021, 422, 130130 |
90. | T. Pan, J. Zhang, D. Che, Z. Wang, J. Wang, J. Wang, Y. Wang, Appl. Phys. Lett., 2023, 122, 72902 |
91. | P. Qiao, Y. Zhang, X. Chen, M. Zhou, G. Wang, X. Dong, J. Alloy. Compd., 2019, 780, 581 |
92. | H. Yuan, X. Fan, Z. Zheng, M. Zhao, L. Zhao, K. Zhu, J. Wang, Chem. Eng. J., 2023, 456, 141023 |
93. | S. Gao, Y. Huang, Y. Jiang, M. Shen, H. Huang, S. Jiang, Y. He, Q. Zhang, Acta Materialia, 2023, 246, 118730. |
94. | M. Wang, Q. Feng, C. Luo, Y. Lan, C. Yuan, N. Luo, C. Zhou, T. Fujita, J. Xu, G. Chen, Y. Wei, ACS Appl. Mater. Interfaces, 2021, 13, 51218 |
95. | J. Liu, P. Li, C. Li, W. Bai, S. Wu, P. Zheng, J. Zhang, J. Zhai, ACS Appl. Mater. Interfaces, 2022, 14, 17662 |
96. | A. Xie, J. Fu, R. Zuo, C. Zhou, Z. Qiao, T. Li, S. Zhang, Chem. Eng. J., 2022, 429, 132534 |
97. | W. Chao, L. Tian, T. Yang, Y. Li, Z. Liu, Chem. Eng. J., 2022, 433, 133814 |
98. | Y. Zhou, S. Gao, J. Huang, M. Shen, S. Jiang, Y. He, Q. Zhang, J. Materiomics, 2023, 9, 410. |
99. | D. Feng, H. Du, H. Ran, T. Lu, S. Xia, L. Xu, Z. Wang, C. Ma, J. Solid State Chem., 2022, 310, 123081 |
100. | Y. Xu, Y. Guo, Q. Liu, Y. Yin, J. Bai, L. Lin, J. Tian, Y. Tian, J. Alloy. Compd., 2020, 821, 153260 |
101. | J. Ai, X. Chen, L. Luo, R. Zheng, L. Xu, Ceram. Int., 2022, 48, 23630 |
102. | S. Li, T. Hu, H. Nie, Z. Fu, C. Xu, F. Xu, G. Wang, X. Dong, Energy Storage Mater., 2021, 34, 417 |
103. | L.-F. Zhu, L. Zhao, Y. Yan, H. Leng, X. Li, L.-Q. Cheng, X. Xiong, S. Priya, J. Mater. Chem. A, 2021, 9, 9655 |
104. | Z. Lu, W. Bao, G. Wang, S.-K. Sun, L. Li, J. Lei, H. Yang, H. Ji, A. Feteira, D. Li, F. Xu, A. K. Kleppe, D. Wang, S.-Y. Liu, I. M. Reaney, Nano Energy, 2021, 79, 105423 |
105. | J. Gao, Y. Zhang, L. Zhao, K.-Y. Lee, Q. Liu, A. Studer, M. Hinterstein, S. Zhang, J.-F. Li, J. Mater. Chem. A, 2019, 7, 2225 |
106. | M. Shang, P. Ren, D. Ren, X. Wang, X. Lu, F. Yan, G. Zhao, Mater. Res. Bull., 2023, 157, 112008 |
107. | J. Li, L. Jin, Y. Tian, C. Chen, Y. Lan, Q. Hu, C. Li, X. Wei, H. Yan, J. Materiomics, 2022, 8, 266 |
108. | M. Zhao, J. Wang, H. Yuan, Z. Zheng, L. Zhao, J. Materiomics, 2023, 9, 19 |
109. | P. Shi, X. Wang, X. Lou, C. Zhou, Q. Liu, L. He, S. Yang, X. Zhang, J. Alloy. Compd., 2021, 877, 160162 |
110. | B. Li, Z. Yan, X. Zhou, H. Qi, V. Koval, X. Luo, H Luo, H. Yan, D. Zhang, ACS Appl. Mater. Interfaces, 2023, 15, 4246 |
111. | L. Ma, Z. Chen, Z. Che, Q. Feng, Z. Cen, F. Toyohisa, Y. Wei, C. Hu, L. Liu, N. Luo, J. Eur. Ceram. Soc., 2022, 42, 2204 |
112. | K. Han, N. Luo, S. Mao, F. Zhuo, L. Liu, B. Peng, X. Chen, C. Hu, H. Zhou, Y. Wei, J. Mater. Chem. A, 2019, 7, 26293 |
113. | L. Ma, Z. Che, C. Xu, Z. Cen, Q. Feng, X. Chen, F. Toyohisa, J.-F. Li, S. Zhang, N. Luo, J. Eur. Ceram. Soc., 2023, 43, 3228 |
114. | P. Ge, X. Tang, K. Meng, X.-X. Huang, Q.-X. Liu, Y.-P. Jiang, W.-P. Gong, T. Wang, Mater. Today Phys., 2022, 24, 100681 |
115. | K. Huang, G. Ge, H. Bai, F. Yan, X. He, Y. Shi, B. shen, J. Zhai, J. Eur. Ceram. Soc., 2021, 41, 2450 |
116. | P. Ge, X. Tang, K. Meng, X.-X. Huang, S.-F. Li, Q.-X. Liu, Y.-P. Jiang, Chem. Eng. J., 2022, 429, 132540 |
117. | X. Meng, Y. Zhao, Y. Li, X. Hao, J. Am. Ceram. Soc., 2021, 104, 2170 |
118. | G. Ge, H. Bai, Y. Shi, C. Shi, X. He, J. He, B. Shen, J. Zhai, X. Chou, J. Mater. Chem. A, 2021, 9, 11291 |
119. | Y. Wu, Y. Fan, N. Liu, P. Peng, M. Zhou, S. Yan, F. Cao, X. Dong, G. Wang, J. Mater. Chem. C, 2019, 7, 6222 |
120. | P. Ren, Z. Liu, X. Wang, Z. Duan, Y. Wan, F. Yan, G. Zhao, J. Alloy. Compd., 2018, 742, 683 |
121. | X. Wu, H. Liu, J. Chen, J. Mater. Res., 2021, 36, 1153 |
122. | Y. Pu, L. Zhang, Y. Cui, M. Chen, ACS Sustain. Chem. Eng., 2018, 6, 6102 |
123. | D. He, Y. Wang, S. Song, S. Liu, Y. Luo, Y. Deng, Compos. Sci. Technol., 2017, 151, 25 |
124. | Y. Shen, L. Wu, J. Zhao, J. Liu, L. Tang, X. Chen, H. Li, Z. Su, Y. Zhang, J. Zhai, Z. Pan, Chem. Eng. J., 2022, 439, 135762 |
125. | Q. Wang, B. Xie, Q. Zheng, M. A. Marwat, Z. Liu, P. Mao, S. Jiang, H. Zhang, Chem. Eng. J., 2023, 452, 139422 |
126. | R. Kang, Z. Wang, W. Yang, X. Zhu, L. He, Y. Gao, J. Zhao, P. Shi, Y. Zhao, P. Mao, Y. Hu, L. Zhang, X. Lou, Chem. Eng. J., 2022, 446, 137105 |
127. | B. Laubacker, K. Wang, M. Wetherington, N. Wonderling, J. V. Badding, S. E. Mohney, J. Mater Sci: Mater. Ele., 2023, 34, 741 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Pb-based | Bi0.5Na0.5TiO3-based | AgNbO3-based | NaNbO3-based | |
Urec | excellent | poor | well | well |
η | well | excellent | poor | well |
Materials price | low | low | high | midium |
Human health | poor | excellent | excellent | well |
The application of dielectric energy storage materials in pulsed-discharge and power conditioning electronic devices.
Comparison of energy-storage properties among four typical anti-ferroelectric ceramics in recent 10 years.
a The prices of commonly used oxides. Comparison of b raw material price, c temperature stability and d energy storage performance of four typical antiferroelectric ceramics reported recently.