Shaoqing Lu, Lulu Huang, Yu Liu. Development of solution-processed p-type polycrystalline SnSe thermoelectric nanomaterials[J]. Materials Lab, 2024, 3(3): 240008. doi: 10.54227/mlab.20240008
Citation: Shaoqing Lu, Lulu Huang, Yu Liu. Development of solution-processed p-type polycrystalline SnSe thermoelectric nanomaterials[J]. Materials Lab, 2024, 3(3): 240008. doi: 10.54227/mlab.20240008

PERSPECTIVE

Development of solution-processed p-type polycrystalline SnSe thermoelectric nanomaterials

More Information
  • Corresponding author: yliu@hfut.edu.cn
  • SnSe has emerged as a promising mid-temperature thermoelectric (TE) material, owing to its intrinsically low lattice thermal conductivity and favorable electronic properties. Solution-processing provides a scalable and adaptable approach to synthesizing polycrystalline SnSe, allowing for precise control over the nanostructure, defect density, and dopant distribution, which are essential factors for optimizing TE performance. Advances in doping/alloying, defect engineering and surface functionalization have been proven to enhance carrier concentrations, Seebeck coefficients, and reduced lattice thermal conductivity in p-type SnSe, resulting in notable TE efficiency. However, achieving comparable efficiency in solution-processed n-type SnSe remains challenging due to limited electron carrier concentration. In addition, low carrier mobility further limits the TE performance of polycrystalline SnSe at low temperatures. This perspective briefly explores the development of solution-processed SnSe nanostructures, with a focus on ongoing advancements in processing techniques and optimization strategies essential for promoting solution-processed SnSe for practical TE applications.


  • 加载中
  • Shaoqing Lu is a Ph.D. candidate under the supervision of Prof. Yu Liu at the School of Chemistry and Chemical Engineering, Hefei University of Technology. He received his B.S. in Materials Science and Engineering from the same university. His research focuses on the synthesis and optimization of thermoelectric materials, especially lead-based chalcogenides.
    Lulu Huang joined the School of Materials Science and Engineering at Hefei University of Technology in 2021. She received her Ph.D. from the University of Science and Technology of China and spent one year as a joint Ph.D. student at Seoul National University. Her current research focuses on exploring the structure-activity relationships between the physical properties and microscopic components of thermoelectric materials.
    Yu Liu is a professor at the School of Chemistry and Chemical Engineering, Hefei University of Technology. He received his Ph.D. from the University of Barcelona in 2018 subsequently carried out postdoctoral research at the Institute of Science and Technology Austria from 2018 to 2021. His research focuses on the bottom-up engineering of chalcogenide nanostructures to develop high-performance thermoelectric materials and devices.
  • 1. S. Ortega, M. Ibáñez, Y. Liu, Y. Zhang, M. V. Kovalenko, D. Cadavid, A. Cabot, Chem. Soc. Rev., 2017, 46, 3510
    2. B. Qin, L. D. Zhao, Mater. Lab, 2022, 1, 220004
    3. Y. Xiao, Mater. Lab, 2022, 1, 220025
    4. L. D. Zhao, C. Chang, G. Tan, M. G. Kanatzidis, Energy Environ. Sci., 2016, 9, 3044
    5. D. Liu, B. Qin, L. D. Zhao, Mater. Lab, 2022, 1, 220006
    6. L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature, 2014, 508, 373
    7. Y. Xiao, C. Chang, Y. Pei, D. Wu, K. Peng, X. Zhou, S. Gong, J. He, Y. Zhang, Z. Zeng, L. D. Zhao, Phys. Rev. B, 2016, 94, 125203
    8. W. Wei, C. Chang, T. Yang, J. Liu, H. Tang, J. Zhang, Y. Li, F. Xu, Z. Zhang, J. -F. Li, G. Tang, J. Am. Chem. Soc., 2017, 140, 499
    9. X. Shi, Z. G. Chen, W. Liu, L. Yang, M. Hong, R. Moshwan, L. Huang, J. Zou, Energy Storage Mater., 2018, 10, 130
    10. Y. Gong, S. Zhang, Y. Hou, S. Li, C. Wang, W. Xiong, Q. Zhang, X. Miao, J. Liu, Y. Cao, ACS Nano, 2023, 17, 801
    11. X. Shi, W. Liu, A. Wu, V. T. Nguyen, H. Gao, Q. Sun, R. Moshwan, J. Zou, Z. Chen, InfoMat, 2020, 2, 1201
    12. X.-L. Shi, W.-D. Liu, M. Li, Q. Sun, S.-D. Xu, D. Du, J. Zou, Z.-G. Chen, Adv. Energy Mater., 2022, 12, 2200670
    13. Y. Liu, M. Calcabrini, Y. Yu, A. Genç, C. Chang, T. Costanzo, T. Kleinhanns, S. Lee, J. Llorca, O. Cojocaru-Mirédin, M. Ibáñez, Adv. Mater., 2021, 33, 2106858
    14. Y. Liu, S. Lee, C. Fiedler, M. Chiara Spadaro, C. Chang, M. Li, M. Hong, J. Arbiol, M. Ibáñez, Chem. Eng. J., 2024, 490, 151405
    15. S. Li, X. Lou, B. Zou, Y. Hou, J. Zhang, D. Li, J. Fang, T. Feng, D. Zhang, Y. Liu, Mater. Today Phys., 2021, 21, 100542
    16. C. Wu, X. Shi, M. Li, Z. Zheng, L. Zhu, K. Huang, W. Liu, P. Yuan, L. Cheng, Z. Chen, Adv. Funct. Mater., 2024, 34, 2402317
    17. S. Li, Y. Hou, D. Li, B. Zou, Q. Zhang, Y. Cao, G. Tang, J. Mater. Chem. A, 2022, 10, 12429
    18. Y. Gong, P. Ying, Q. Zhang, Y. Liu, X. Huang, W. Dou, Y. Zhang, D. Li, D. Zhang, T. Feng, Energy Environ. Sci., 2024, 17, 1612
    19. X. Liu, Y. Chen, H. Wang, S. Liu, B. Zhang, X. Lu, G. Wang, G. Han, X. Chen, X. Zhou, ACS Appl. Mater. Interfaces, 2024, 16, 2240
    20. X. Lou, S. Li, X. Chen, Q. Zhang, H. Deng, J. Zhang, D. Li, X. Zhang, Y. Zhang, H. Zeng, G. Tang, ACS Nano, 2021, 15, 8204
    21. W. Dou, Y. Gong, X. Huang, Y. Li, Q. Zhang, Y. Liu, Q. Xia, Q. Jian, D. Xiang, D. Li, D. Zhang, S. Zhang, P. Ying, G. Tang, Small, 2024, 20, 2311153
    22. X. Li, C. Chen, W. Xue, S. Li, F. Cao, Y. Chen, J. He, J. Sui, X. Liu, Y. Wang, Q. Zhang, Inorg. Chem., 2018, 57, 13800
    23. Z.-C. Wang, X.-D. Jiang, Y.-X. Duan, X. Wang, Z.-H. Ge, J.-M. Cai, X.-M. Cai, H.-L. Tan, J. Eur. Ceram. Soc., 2024, 44, 1636
    24. X. Shi, A. Wu, T. Feng, K. Zheng, W. Liu, Q. Sun, M. Hong, S. T. Pantelides, Z.-G. Chen, J. Zou, Adv. Energy Mater., 2019, 9, 1803242
    25. L. Huang, G. Han, B. Zhang, D. H. Gregory, J. Mater. Chem. C, 2019, 7, 7572
    26. J. J. Liu, P. Wang, M. Wang, R. Xu, J. Zhang, J. J. Liu, D. Li, N. Liang, Y. Du, G. Chen, G. Tang, Nano Energy, 2018, 53, 683
    27. R. Xu, L. Huang, J. Zhang, D. Li, J. Liu, J. Liu, J. Fang, M. Wang, G. Tang, J. Mater. Chem. A, 2019, 7, 15757
    28. Y. Liu, M. Calcabrini, Y. Yu, S. Lee, C. Chang, J. David, T. Ghosh, M. C. Spadaro, C. Xie, O. Cojocaru-Mirédin, J. Arbiol, M. Ibáñez, ACS Nano, 2022, 16, 78
    29. G. Tang, W. Wei, J. Zhang, Y. Li, X. Wang, G. Xu, C. Chang, Z. Wang, Y. Du, L. D. Zhao, J. Am. Chem. Soc., 2016, 138, 13647
    30. S. Li, Y. Hou, S. Zhang, Y. Gong, S. Siddique, D. Li, J. Fang, P. Nan, B. Ge, G. Tang, Chem. Eng. J., 2023, 451, 138637
    31. T. R. Wei, G. Tan, X. Zhang, C. F. Wu, J. F. Li, V. P. Dravid, G. J. Snyder, M. G. Kanatzidis, J. Am. Chem. Soc., 2016, 138, 8875
    32. T. R. Wei, C. F. Wu, X. Zhang, Q. Tan, L. Sun, Y. Pan, J. F. Li, Phys. Chem. Chem. Phys., 2015, 17, 30102
    33. C. -C. Lin, R. Lydia, J. Hyun Yun, H. Seong Lee, J. Soo Rhyee, Chem. Mater., 2017, 29, 5344
    34. B. Su, Z. Han, Y. Jiang, H.-L. Zhuang, J. Yu, J. Pei, H. Hu, J.-W. Li, Y.-X. He, B.-P. Zhang, J.-F. Li, Adv. Funct. Mater., 2023, 33, 2301971
    35. E. K. Chere, Q. Zhang, K. Dahal, F. Cao, J. Mao, Z. Ren, J. Mater. Chem. A, 2016, 4, 1848
    36. Y. Luo, S. Cai, X. Hua, H. Chen, Q. Liang, C. Du, Y. Zheng, J. Shen, J. Xu, C. Wolverton, V. P. Dravid, Q. Yan, M. G. Kanatzidis, Adv. Energy Mater., 2019, 9, 1803072
    37. B. Cai, J. Li, H. Sun, P. Zhao, F. Yu, L. Zhang, D. Yu, Y. Tian, B. Xu, J. Alloys Compd., 2017, 727, 1014
    38. Z. H. Ge, D. Song, X. Chong, F. Zheng, L. Jin, X. Qian, L. Zheng, R. E. Dunin-Borkowski, P. Qin, J. Feng, L. D. Zhao, J. Am. Chem. Soc., 2017, 139, 9714
    39. Y. K. Lee, Z. Luo, S. P. Cho, M. G. Kanatzidis, I. Chung, Joule, 2019, 3, 719
    40. Q. Zhao, D. Wang, B. Qin, G. Wang, Y. Qiu, L. D. Zhao, J. Solid State Chem., 2019, 273, 85
    41. Y. X. Chen, Z. H. Ge, M. Yin, D. Feng, X. Q. Huang, W. Zhao, J. He, Adv. Funct. Mater., 2016, 26, 6836
    42. S. Liang, J. Xu, J. G. Noudem, H. Wang, X. Tan, G.-Q. Liu, H. Shao, B. Yu, S. Yue, J. Jiang, J. Mater. Chem. A, 2018, 6, 23730
    43. Q. Zhao, B. Qin, D. Wang, Y. Qiu, L.-D. Zhao, ACS Appl. Energy Mater., 2020, 3, 2049
    44. A. K. Munirathnappa, H. Lee, I. Chung, Mater. Lab, 2023, 2, 220056
    45. C. Zhou, Y. K. Lee, Y. Yu, S. Byun, Z.-Z. Luo, H. Lee, B. Ge, Y.-L. Lee, X. Chen, J. Y. Lee, O. Cojocaru-Mirédin, H. Chang, J. Im, S.-P. Cho, M. Wuttig, V. P. Dravid, M. G. Kanatzidis, I. Chung, Nat. Mater., 2021, 20, 1378
    46. L.-D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton, M. G. Kanatzidis, Science, 2015, 351, 141
    47. G. Shi, E. Kioupakis, J. Appl. Phys., 2015, 117, 065103
    48. C. Fiedler, T. Kleinhanns, M. Garcia, S. Lee, M. Calcabrini, M. Ibáñez, Chem. Mater., 2022, 34, 8471
    49. L. Li, Z. Chen, Y. Hu, X. Wang, T. Zhang, W. Chen, Q. Wang, J. Am. Chem. Soc., 2013, 135, 1213
    50. X. Liu, Y. Li, B. Zhou, X. Wang, A. N. Cartwright, M. T. Swihart, Chem. Mater., 2014, 26, 3515
    51. S. Liu, X. Guo, M. Li, W. H. Zhang, X. Liu, C. Li, Angew. Chemie Int. Ed., 2011, 50, 12050
    52. G. Han, S. R. Popuri, H. F. Greer, J. W. G. Bos, W. Zhou, A. R. Knox, A. Montecucco, J. Siviter, E. A. Man, M. MacAuley, D. J. Paul, W. G. Li, M. C. Paul, M. Gao, T. Sweet, R. Freer, F. Azough, H. Baig, N. Sellami, T. K. Mallick, D. H. Gregory, Angew. Chemie Int. Ed., 2016, 55, 6433
    53. C. Fiedler, M. Calcabrini, Y. Liu, M. Ibáñez, Angew. Chemie Int. Ed., 2024, 63, e202402628
    54. J. Sangster, A. D. Pelton, J. Phase Equilib., 1997, 18, 185
    55. S.-J. L. Kang, Sintering: Densification, Grain Growth, and Microstructure, Butterworth–Heinemann, England, 2005
    56. G. Han, S. R. Popuri, H. F. Greer, L. F. Llin, J.-W. G. Bos, W. Zhou, D. J. Paul, H. Ménard, A. R. Knox, A. Montecucco, J. Siviter, E. A. Man, W. Li, M. C. Paul, M. Gao, T. Sweet, R. Freer, F. Azough, H. Baig, T. K. Mallick, D. H. Gregory, Adv. Energy Mater., 2017, 7, 1602328
    57. S. Byun, B. Ge, H. Song, S.-P. Cho, M. S. Hong, J. Im, I. Chung, Joule, 2024, 8, 1520
    58. Y. Gong, W. Dou, B. Lu, X. Zhang, H. Zhu, P. Ying, Q. Zhang, Y. Liu, Y. Li, X. Huang, M. F. Iqbal, S. Zhang, D. Li, Y. Zhang, H. Wu, G. Tang, Nat. Commun., 2024, 15, 4231
    59. S. Chandra, U. Bhat, P. Dutta, A. Bhardwaj, R. Datta, K. Biswas, Adv. Mater., 2022, 34, 2203725
    60. V. Taneja, N. Goyal, S. Das, S. Chandra, P. Dutta, N. Ravishankar, K. Biswas, J. Am. Chem. Soc., 2024, 146, 24716
    61. C. Fiedler, Y. Liu, M. Ibáñez, J. Visualized Exp., 2024, e66278
    62. C. Chang, Y. Liu, S. Ho Lee, M. Chiara Spadaro, K. M. Koskela, T. Kleinhanns, T. Costanzo, J. Arbiol, R. L. Brutchey, M. Ibáñez, Angew. Chemie Int. Ed., 2022, 61, e202207002
    63. C. Xing, Y. Zhang, K. Xiao, X. Han, Y. Liu, B. Nan, M. G. Ramon, K. H. Lim, J. Li, J. Arbiol, B. Poudel, A. Nozariasbmarz, W. Li, M. Ibáñez, A. Cabot, ACS Nano, 2023, 17, 8442
    64. D. S. Dolzhnikov, H. Zhang, J. Jang, J. S. Son, M. G. Panthani, T. Shibata, S. Chattopadhyay, D. V Talapin, Science, 2015, 347, 425
    65. Y. Xiao, L. D. Zhao, Science, 2020, 367, 1196
    66. B. Qin, M. G. Kanatzidis, L.-D. Zhao, Science, 2024, 386, eadp2444
    67. F. Zhang, D. Wu, J. He, Mater. Lab, 2022, 1, 220011
    68. C. Hu, K. Xia, C. Fu, X. B. Zhao, T. Zhu, Energy Environ. Sci., 2022, 15, 1406
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Information

Article Metrics

Article views(546) PDF downloads(198) Citation(0)

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint