Citation: | Shaoqing Lu, Lulu Huang, Yu Liu. Development of solution-processed p-type polycrystalline SnSe thermoelectric nanomaterials[J]. Materials Lab, 2024, 3(3): 240008. doi: 10.54227/mlab.20240008 |
SnSe has emerged as a promising mid-temperature thermoelectric (TE) material, owing to its intrinsically low lattice thermal conductivity and favorable electronic properties. Solution-processing provides a scalable and adaptable approach to synthesizing polycrystalline SnSe, allowing for precise control over the nanostructure, defect density, and dopant distribution, which are essential factors for optimizing TE performance. Advances in doping/alloying, defect engineering and surface functionalization have been proven to enhance carrier concentrations, Seebeck coefficients, and reduced lattice thermal conductivity in p-type SnSe, resulting in notable TE efficiency. However, achieving comparable efficiency in solution-processed n-type SnSe remains challenging due to limited electron carrier concentration. In addition, low carrier mobility further limits the TE performance of polycrystalline SnSe at low temperatures. This perspective briefly explores the development of solution-processed SnSe nanostructures, with a focus on ongoing advancements in processing techniques and optimization strategies essential for promoting solution-processed SnSe for practical TE applications.
1. | S. Ortega, M. Ibáñez, Y. Liu, Y. Zhang, M. V. Kovalenko, D. Cadavid, A. Cabot, Chem. Soc. Rev., 2017, 46, 3510 |
2. | B. Qin, L. D. Zhao, Mater. Lab, 2022, 1, 220004 |
3. | Y. Xiao, Mater. Lab, 2022, 1, 220025 |
4. | L. D. Zhao, C. Chang, G. Tan, M. G. Kanatzidis, Energy Environ. Sci., 2016, 9, 3044 |
5. | D. Liu, B. Qin, L. D. Zhao, Mater. Lab, 2022, 1, 220006 |
6. | L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature, 2014, 508, 373 |
7. | Y. Xiao, C. Chang, Y. Pei, D. Wu, K. Peng, X. Zhou, S. Gong, J. He, Y. Zhang, Z. Zeng, L. D. Zhao, Phys. Rev. B, 2016, 94, 125203 |
8. | W. Wei, C. Chang, T. Yang, J. Liu, H. Tang, J. Zhang, Y. Li, F. Xu, Z. Zhang, J. -F. Li, G. Tang, J. Am. Chem. Soc., 2017, 140, 499 |
9. | X. Shi, Z. G. Chen, W. Liu, L. Yang, M. Hong, R. Moshwan, L. Huang, J. Zou, Energy Storage Mater., 2018, 10, 130 |
10. | Y. Gong, S. Zhang, Y. Hou, S. Li, C. Wang, W. Xiong, Q. Zhang, X. Miao, J. Liu, Y. Cao, ACS Nano, 2023, 17, 801 |
11. | X. Shi, W. Liu, A. Wu, V. T. Nguyen, H. Gao, Q. Sun, R. Moshwan, J. Zou, Z. Chen, InfoMat, 2020, 2, 1201 |
12. | X.-L. Shi, W.-D. Liu, M. Li, Q. Sun, S.-D. Xu, D. Du, J. Zou, Z.-G. Chen, Adv. Energy Mater., 2022, 12, 2200670 |
13. | Y. Liu, M. Calcabrini, Y. Yu, A. Genç, C. Chang, T. Costanzo, T. Kleinhanns, S. Lee, J. Llorca, O. Cojocaru-Mirédin, M. Ibáñez, Adv. Mater., 2021, 33, 2106858 |
14. | Y. Liu, S. Lee, C. Fiedler, M. Chiara Spadaro, C. Chang, M. Li, M. Hong, J. Arbiol, M. Ibáñez, Chem. Eng. J., 2024, 490, 151405 |
15. | S. Li, X. Lou, B. Zou, Y. Hou, J. Zhang, D. Li, J. Fang, T. Feng, D. Zhang, Y. Liu, Mater. Today Phys., 2021, 21, 100542 |
16. | C. Wu, X. Shi, M. Li, Z. Zheng, L. Zhu, K. Huang, W. Liu, P. Yuan, L. Cheng, Z. Chen, Adv. Funct. Mater., 2024, 34, 2402317 |
17. | S. Li, Y. Hou, D. Li, B. Zou, Q. Zhang, Y. Cao, G. Tang, J. Mater. Chem. A, 2022, 10, 12429 |
18. | Y. Gong, P. Ying, Q. Zhang, Y. Liu, X. Huang, W. Dou, Y. Zhang, D. Li, D. Zhang, T. Feng, Energy Environ. Sci., 2024, 17, 1612 |
19. | X. Liu, Y. Chen, H. Wang, S. Liu, B. Zhang, X. Lu, G. Wang, G. Han, X. Chen, X. Zhou, ACS Appl. Mater. Interfaces, 2024, 16, 2240 |
20. | X. Lou, S. Li, X. Chen, Q. Zhang, H. Deng, J. Zhang, D. Li, X. Zhang, Y. Zhang, H. Zeng, G. Tang, ACS Nano, 2021, 15, 8204 |
21. | W. Dou, Y. Gong, X. Huang, Y. Li, Q. Zhang, Y. Liu, Q. Xia, Q. Jian, D. Xiang, D. Li, D. Zhang, S. Zhang, P. Ying, G. Tang, Small, 2024, 20, 2311153 |
22. | X. Li, C. Chen, W. Xue, S. Li, F. Cao, Y. Chen, J. He, J. Sui, X. Liu, Y. Wang, Q. Zhang, Inorg. Chem., 2018, 57, 13800 |
23. | Z.-C. Wang, X.-D. Jiang, Y.-X. Duan, X. Wang, Z.-H. Ge, J.-M. Cai, X.-M. Cai, H.-L. Tan, J. Eur. Ceram. Soc., 2024, 44, 1636 |
24. | X. Shi, A. Wu, T. Feng, K. Zheng, W. Liu, Q. Sun, M. Hong, S. T. Pantelides, Z.-G. Chen, J. Zou, Adv. Energy Mater., 2019, 9, 1803242 |
25. | L. Huang, G. Han, B. Zhang, D. H. Gregory, J. Mater. Chem. C, 2019, 7, 7572 |
26. | J. J. Liu, P. Wang, M. Wang, R. Xu, J. Zhang, J. J. Liu, D. Li, N. Liang, Y. Du, G. Chen, G. Tang, Nano Energy, 2018, 53, 683 |
27. | R. Xu, L. Huang, J. Zhang, D. Li, J. Liu, J. Liu, J. Fang, M. Wang, G. Tang, J. Mater. Chem. A, 2019, 7, 15757 |
28. | Y. Liu, M. Calcabrini, Y. Yu, S. Lee, C. Chang, J. David, T. Ghosh, M. C. Spadaro, C. Xie, O. Cojocaru-Mirédin, J. Arbiol, M. Ibáñez, ACS Nano, 2022, 16, 78 |
29. | G. Tang, W. Wei, J. Zhang, Y. Li, X. Wang, G. Xu, C. Chang, Z. Wang, Y. Du, L. D. Zhao, J. Am. Chem. Soc., 2016, 138, 13647 |
30. | S. Li, Y. Hou, S. Zhang, Y. Gong, S. Siddique, D. Li, J. Fang, P. Nan, B. Ge, G. Tang, Chem. Eng. J., 2023, 451, 138637 |
31. | T. R. Wei, G. Tan, X. Zhang, C. F. Wu, J. F. Li, V. P. Dravid, G. J. Snyder, M. G. Kanatzidis, J. Am. Chem. Soc., 2016, 138, 8875 |
32. | T. R. Wei, C. F. Wu, X. Zhang, Q. Tan, L. Sun, Y. Pan, J. F. Li, Phys. Chem. Chem. Phys., 2015, 17, 30102 |
33. | C. -C. Lin, R. Lydia, J. Hyun Yun, H. Seong Lee, J. Soo Rhyee, Chem. Mater., 2017, 29, 5344 |
34. | B. Su, Z. Han, Y. Jiang, H.-L. Zhuang, J. Yu, J. Pei, H. Hu, J.-W. Li, Y.-X. He, B.-P. Zhang, J.-F. Li, Adv. Funct. Mater., 2023, 33, 2301971 |
35. | E. K. Chere, Q. Zhang, K. Dahal, F. Cao, J. Mao, Z. Ren, J. Mater. Chem. A, 2016, 4, 1848 |
36. | Y. Luo, S. Cai, X. Hua, H. Chen, Q. Liang, C. Du, Y. Zheng, J. Shen, J. Xu, C. Wolverton, V. P. Dravid, Q. Yan, M. G. Kanatzidis, Adv. Energy Mater., 2019, 9, 1803072 |
37. | B. Cai, J. Li, H. Sun, P. Zhao, F. Yu, L. Zhang, D. Yu, Y. Tian, B. Xu, J. Alloys Compd., 2017, 727, 1014 |
38. | Z. H. Ge, D. Song, X. Chong, F. Zheng, L. Jin, X. Qian, L. Zheng, R. E. Dunin-Borkowski, P. Qin, J. Feng, L. D. Zhao, J. Am. Chem. Soc., 2017, 139, 9714 |
39. | Y. K. Lee, Z. Luo, S. P. Cho, M. G. Kanatzidis, I. Chung, Joule, 2019, 3, 719 |
40. | Q. Zhao, D. Wang, B. Qin, G. Wang, Y. Qiu, L. D. Zhao, J. Solid State Chem., 2019, 273, 85 |
41. | Y. X. Chen, Z. H. Ge, M. Yin, D. Feng, X. Q. Huang, W. Zhao, J. He, Adv. Funct. Mater., 2016, 26, 6836 |
42. | S. Liang, J. Xu, J. G. Noudem, H. Wang, X. Tan, G.-Q. Liu, H. Shao, B. Yu, S. Yue, J. Jiang, J. Mater. Chem. A, 2018, 6, 23730 |
43. | Q. Zhao, B. Qin, D. Wang, Y. Qiu, L.-D. Zhao, ACS Appl. Energy Mater., 2020, 3, 2049 |
44. | A. K. Munirathnappa, H. Lee, I. Chung, Mater. Lab, 2023, 2, 220056 |
45. | C. Zhou, Y. K. Lee, Y. Yu, S. Byun, Z.-Z. Luo, H. Lee, B. Ge, Y.-L. Lee, X. Chen, J. Y. Lee, O. Cojocaru-Mirédin, H. Chang, J. Im, S.-P. Cho, M. Wuttig, V. P. Dravid, M. G. Kanatzidis, I. Chung, Nat. Mater., 2021, 20, 1378 |
46. | L.-D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton, M. G. Kanatzidis, Science, 2015, 351, 141 |
47. | G. Shi, E. Kioupakis, J. Appl. Phys., 2015, 117, 065103 |
48. | C. Fiedler, T. Kleinhanns, M. Garcia, S. Lee, M. Calcabrini, M. Ibáñez, Chem. Mater., 2022, 34, 8471 |
49. | L. Li, Z. Chen, Y. Hu, X. Wang, T. Zhang, W. Chen, Q. Wang, J. Am. Chem. Soc., 2013, 135, 1213 |
50. | X. Liu, Y. Li, B. Zhou, X. Wang, A. N. Cartwright, M. T. Swihart, Chem. Mater., 2014, 26, 3515 |
51. | S. Liu, X. Guo, M. Li, W. H. Zhang, X. Liu, C. Li, Angew. Chemie Int. Ed., 2011, 50, 12050 |
52. | G. Han, S. R. Popuri, H. F. Greer, J. W. G. Bos, W. Zhou, A. R. Knox, A. Montecucco, J. Siviter, E. A. Man, M. MacAuley, D. J. Paul, W. G. Li, M. C. Paul, M. Gao, T. Sweet, R. Freer, F. Azough, H. Baig, N. Sellami, T. K. Mallick, D. H. Gregory, Angew. Chemie Int. Ed., 2016, 55, 6433 |
53. | C. Fiedler, M. Calcabrini, Y. Liu, M. Ibáñez, Angew. Chemie Int. Ed., 2024, 63, e202402628 |
54. | J. Sangster, A. D. Pelton, J. Phase Equilib., 1997, 18, 185 |
55. | S.-J. L. Kang, Sintering: Densification, Grain Growth, and Microstructure, Butterworth–Heinemann, England, 2005 |
56. | G. Han, S. R. Popuri, H. F. Greer, L. F. Llin, J.-W. G. Bos, W. Zhou, D. J. Paul, H. Ménard, A. R. Knox, A. Montecucco, J. Siviter, E. A. Man, W. Li, M. C. Paul, M. Gao, T. Sweet, R. Freer, F. Azough, H. Baig, T. K. Mallick, D. H. Gregory, Adv. Energy Mater., 2017, 7, 1602328 |
57. | S. Byun, B. Ge, H. Song, S.-P. Cho, M. S. Hong, J. Im, I. Chung, Joule, 2024, 8, 1520 |
58. | Y. Gong, W. Dou, B. Lu, X. Zhang, H. Zhu, P. Ying, Q. Zhang, Y. Liu, Y. Li, X. Huang, M. F. Iqbal, S. Zhang, D. Li, Y. Zhang, H. Wu, G. Tang, Nat. Commun., 2024, 15, 4231 |
59. | S. Chandra, U. Bhat, P. Dutta, A. Bhardwaj, R. Datta, K. Biswas, Adv. Mater., 2022, 34, 2203725 |
60. | V. Taneja, N. Goyal, S. Das, S. Chandra, P. Dutta, N. Ravishankar, K. Biswas, J. Am. Chem. Soc., 2024, 146, 24716 |
61. | C. Fiedler, Y. Liu, M. Ibáñez, J. Visualized Exp., 2024, e66278 |
62. | C. Chang, Y. Liu, S. Ho Lee, M. Chiara Spadaro, K. M. Koskela, T. Kleinhanns, T. Costanzo, J. Arbiol, R. L. Brutchey, M. Ibáñez, Angew. Chemie Int. Ed., 2022, 61, e202207002 |
63. | C. Xing, Y. Zhang, K. Xiao, X. Han, Y. Liu, B. Nan, M. G. Ramon, K. H. Lim, J. Li, J. Arbiol, B. Poudel, A. Nozariasbmarz, W. Li, M. Ibáñez, A. Cabot, ACS Nano, 2023, 17, 8442 |
64. | D. S. Dolzhnikov, H. Zhang, J. Jang, J. S. Son, M. G. Panthani, T. Shibata, S. Chattopadhyay, D. V Talapin, Science, 2015, 347, 425 |
65. | Y. Xiao, L. D. Zhao, Science, 2020, 367, 1196 |
66. | B. Qin, M. G. Kanatzidis, L.-D. Zhao, Science, 2024, 386, eadp2444 |
67. | F. Zhang, D. Wu, J. He, Mater. Lab, 2022, 1, 220011 |
68. | C. Hu, K. Xia, C. Fu, X. B. Zhao, T. Zhu, Energy Environ. Sci., 2022, 15, 1406 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
a Hall mobility (μH) of p-type polycrystalline SnSe as a function of hole concentration (pH) for solution-processed (green dots)[8–30], solid-state (gray dots)[31–43], and single-crystal SnSe (blue dots)[6,46]. b Pisarenko plot at 300 K, with green symbols representing solution-processed materials[8–22,24–30] and black symbols denoting solid-state synthetic methods[31,35–40], including single crystals[6,46]. The dashed line was calculated using a multiple band model[47].
a Schematic representation of a SnSe particle in aqueous solution, with Na+ ions adsorbed to maintain charge neutrality after purification[13]. b Diagram of the grain boundary interface in aqueous-synthesized SnSe after thermal annealing and sintering. c Enlarged view of the grain boundary (GB), showing the complexions and atomic diffusion mechanisms within the matrix of the system.
Schematic of crystal domain growth during the annealing and consolidation of SnSe particles under conditions without and with different types of molecular complexes.