Chao Li, Yi Wu, Yi-Xin Zhang, Jun Guo, Jing Feng, et al. Bi2S3 as a Promising Thermoelectric Material: Back and Forth. Materials Lab 2022, 1, 220014. doi: 10.54227/mlab.20220014
Citation: Chao Li, Yi Wu, Yi-Xin Zhang, Jun Guo, Jing Feng, et al. Bi2S3 as a Promising Thermoelectric Material: Back and Forth. Materials Lab 2022, 1, 220014. doi: 10.54227/mlab.20220014

Review Article

Bi2S3 as a Promising Thermoelectric Material: Back and Forth

More Information
  • Corresponding author: zge@kmust.edu.cn
  • Thermoelectric conversion technology based on thermoelectric materials can directly convert heat and electricity and is extensively used in waste heat recovery, semiconductor refrigeration, and space exploration. Currently, bismuth telluride (Bi2Te3) thermoelectric materials are the best in terms of room-temperature performance and have been commercialized. Compared with commercial Bi2Te3 thermoelectric materials of the same family (III-VI group), bismuth sulfide (Bi2S3) thermoelectric materials have the unique advantages of being abundant, low-cost, and environmentally friendly. However, the thermoelectric properties of Bi2S3 are limited by its low electrical conductivity. In recent years, with the development of preparation methods and characterization tools, many studies have emerged to improve the thermoelectric properties of Bi2S3 materials. Herein, the preparation of Bi2S3 thermoelectric materials and the implications of the process on their thermoelectric properties are summarized. The advances made in composition, structure and other strategies to optimize the thermoelectric properties of Bi2S3 are highlighted, and the current challenges for the development of Bi2S3 thermoelectric materials and potential future research directions are also discussed.


  • 加载中
  • Chao Li is studying for his Master degree with Prof. Zhen-Hua Ge at Faculty of Materials Science and Engineering from Kunming University of Science and Technology. His research interests focus on preparation and optimization of thermoelectric materials.
    Yi Wu received his B.Eng. degree (2020) in Materials Science and Engineering from Kunming University of Science and technology under the direction of Professor Zhen-Hua Ge. His research focuses primarily on design and optimization of Bi2S3 based thermoelectric materials.
    Yi-Xin Zhang is a Ph.D student with Prof. Zhen-Hua Ge at Faculty of Materials Science and Engineering at Kunming University of Science and Technology. He received his M.E. degree in Materials Science at Kunming University of Science and Technology. His research focuses on the synthesis and characterization of chalcogenide thermoelectric materials, especially copper sulfides and copper selenides.
    Jun Guo is a Ph.D student with Prof. Zhen-Hua Ge at Faculty of Materials Science and Engineering at Kunming University of Science and Technology. His research direction is mainly focused on the design and synthesis in thermoelectric materials with high electric transport properties and/or low thermal conductivity, and effcient photocatalysts.
    Jing Feng is a full professor at Kunming University of Science and Technology. He received his Ph.D. degree in 2012 from University of Science and Technology Kunming, China. And he worked as post-doctoral researcher at University of Harvard University from 2012 to 2014. His research interests focus on ceramic thermal barrier coating material.
    Zhen-Hua Ge is a full professor at Kunming University of Science and Technology. He received his Ph.D. degree in 2013 from University of Science and Technology Beijing, China. And he worked as post-doctoral researcher at University of South Florida and Southern University of Science and Technology from February 2013 to July 2015. His research interests focus on synthesis and properties improvements of thermoelectric materials, especially for sulfides thermoelectric materials.
  • 1. D. Cahen, Mater. Today, 2008, 11, 64
    2. E. Shove, Build. Res. Inf., 2018, 46, 779
    3. L. Yang, Z.-G. Chen, M. S. Dargusch and J. Zou, Adv. Energy Mater., 2018, 8, 1701797
    4. B. Kozinsky and D. J. Singh, Annu. Rev. Mater. Sci., 2021, 51, 565
    5. G. Tan, L.-D. Zhao and M. G. Kanatzidis, Chem. Rev., 2016, 116, 12123
    6. Q. Yan and M. G. Kanatzidis, Nat. Mater., 2021
    7. X. Zhou, Y. Yan, X. Lu, H. Zhu, X. Han, G. Chen and Z. Ren, Mater. Today, 2018, 21, 974
    8. Q. Zhu, S. Wang, X. Wang, A. Suwardi, M. H. Chua, X. Y. D. Soo and J. Xu, Nano-Micro Letters, 2021, 13, 119
    9. K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid and M. G. Kanatzidis, Nature, 2012, 489, 414
    10. G. D. Mahan, APL Mater., 2016, 4, 104806
    11. J. Mao, Z. Liu, J. Zhou, H. Zhu, Q. Zhang, G. Chen and Z. Ren, Adv. Phys., 2018, 67, 69
    12. P. Qiu, X. Shi and L. Chen, Energy Stor. Mater., 2016, 3, 85
    13. J.-F. Li, W.-S. Liu, L.-D. Zhao and M. Zhou, NPG Asia Mater., 2010, 2, 152
    14. M. Dutta, T. Ghosh and K. Biswas, APL Mater., 2020, 8, 040910
    15. M. V. Vedernikov and E. K. Iordanishvili, presented at ICT98, Nagoya, Japan (May, 1998).
    16. H. Cheng, X. He, Z. Fan and J. Ouyang, Adv. Energy Mater., 2019, 9, 1901085
    17. D. M. Rowe, CRC Handbook of Thermoelectrics, CRC press LLC, United States of America, 1995.
    18. C. Gayner and K. K. Kar, Prog. Mater. Sci., 2016, 83, 330
    19. J. L. Blackburn, A. J. Ferguson, C. Cho and J. C. Grunlan, Adv. Mater., 2018, 30, 1704386
    20. V. Kozii, B. Skinner and L. Fu, Phys. Rev. B, 2019, 99, 155123
    21. A. Sakai, S. Minami, T. Koretsune, T. Chen, T. Higo, Y. Wang, T. Nomoto, M. Hirayama, S. Miwa, D. Nishio-Hamane, F. Ishii, R. Arita and S. Nakatsuji, Nature, 2020, 581, 53
    22. K.-i. Uchida, W. Zhou and Y. Sakuraba, Appl. Phys. Lett., 2021, 118, 140504
    23. J. Xiang, S. Hu, M. Lyu, W. Zhu, C. Ma, Z. Chen, F. Steglich, G. Chen and P. Sun, Sci. China Phys. Mech., 2019, 63, 237011
    24. Z. Chen, Z. Jian, W. Li, Y. Chang, B. Ge, R. Hanus, J. Yang, Y. Chen, M. Huang, G. J. Snyder and Y. Pei, Adv. Mater., 2017, 29, 1606768
    25. Z.-Z. Luo, S. Cai, S. Hao, T. P. Bailey, Y. Luo, W. Luo, Y. Yu, C. Uher, C. Wolverton, V. P. Dravid, Z. Zou, Q. Yan and M. G. Kanatzidis, Energy Environ. Sci., 2022, 15, 368
    26. Y.-K. Zhu, P. Wu, J. Guo, Y. Zhou, X. Chong, Z.-H. Ge and J. Feng, Ceram. Int., 2020, 46, 14994
    27. C. Li, S.-H. Li, Y.-X. Zhang, J. Feng and Z.-H. Ge, J. Eur. Ceram. Soc., 2022, 42, 485
    28. Z.-H. Ge, L.-D. Zhao, D. Wu, X. Liu, B.-P. Zhang, J.-F. Li and J. He, Mater. Today, 2016, 19, 227
    29. Dedi, P.-C. Lee, P.-C. Wei and Y.-Y. Chen, Nanomaterials, 2021, 11, 819
    30. R. Guehne, G. V. M. Williams, S. V. Chong and J. Haase, J. Phys. Chem. C, 2021, 125, 6743
    31. J. Guo, Y.-X. Zhang, Z.-Y. Wang, F. Zheng, Z.-H. Ge, J. Fu and J. Feng, Nano Energy, 2020, 78, 105227
    32. M. P. Deshpande, P. N. Sakariya, S. V. Bhatt, N. Garg, K. Patel and S. H. Chaki, Materials Science in Semiconductor Processing, 2014, 21, 180
    33. Z. Kebbab, N. Benramdane, M. Medles, A. Bouzidi and H. Tabet-Derraz, Sol. Energy Mater. Sol. Cells, 2002, 71, 449
    34. L.-L. Long, J.-J. Chen, X. Zhang, A.-Y. Zhang, Y.-X. Huang, Q. Rong and H.-Q. Yu, NPG Asia Mater., 2016, 8, e263
    35. W. Luo, F. Li, Q. Li, X. Wang, W. Yang, L. Zhou and L. Mai, ACS Appl. Mater. Interfaces, 2018, 10, 7201
    36. J. Ni, Y. Zhao, T. Liu, H. Zheng, L. Gao, C. Yan and L. Li, Adv. Energy Mater., 2014, 4, 1400798
    37. Y. Zhao, T. Liu, H. Xia, L. Zhang, J. Jiang, M. Shen, J. Ni and L. Gao, J. Mater. Chem. A, 2014, 2, 13854
    38. B. Zhang, X. Ye, W. Hou, Y. Zhao and Y. Xie, J. Phys. Chem. B, 2006, 110, 8978
    39. Y. Jin, C. Tang, J. Tian and B. Shao, Bioconjug. Chem., 2021, 32, 161
    40. S. Yang, Y. Zhang, S. Lu, L. Liu, L. Yang, Y. Guo, S. Yu and H. Yang, Colloids Surf. B, 2020, 196, 111291
    41. Y. Zhao, Y. Tao, Q. Huang, J. Huang, J. Kuang, R. Gu, P. Zeng, H.-Y. Li, H. Liang and H. Liu, Chemosensors, 2022, 10, 48
    42. Z. Li, K. Ai, Z. Yang, T. Zhang, J. Liu and X. Cui, RSC Adv., 2017, 7, 29672
    43. L. F. Lundegaard, E. Makovicky, T. Boffa-Ballaran and T. Balic-Zunic, Phys. Chem. Miner., 2005, 32, 578
    44. H. T. Shaban, M. M. Nassary and M. S. El-Sadek, Physica B Condens. Matter, 2008, 403, 1655
    45. Z. H. Ge, B. P. Zhang, P. P. Shang and J. F. Li, J. Mater. Chem., 2011, 21, 9194
    46. J. Guo, J. Yang, Z.-H. Ge, B. Jiang, Y. Qiu, Y.-K. Zhu, X. Wang, J. Rong, X. Yu, J. Feng and J. He, Adv. Funct. Mater., 2021, 31, 2102838
    47. R. Chmielowski, D. Pere, C. Bera, I. Opahle, W. J. Xie, S. Jacob, F. Capet, P. Roussel, A. Weidenkaff, G. K. H. Madsen and G. Dennler, J. Appl. Phys., 2015, 117, 125103
    48. C. Li, J. Zhao, Q. Hu, Z. Liu, Z. Yu and H. Yan, J. Alloys Compd., 2016, 688, 329
    49. J. Pei, L. J. Zhang, B. P. Zhang, P. P. Shang and Y. C. Liu, J. Mater. Chem. C, 2017, 5, 12492
    50. W. Ji, X.-L. Shi, W.-D. Liu, H. Yuan, K. Zheng, B. Wan, W. Shen, Z. Zhang, C. Fang, Q. Wang, L. Chen, Y. Zhang, X. Jia and Z.-G. Chen, Nano Energy, 2021, 87, 106171
    51. B. Chen, C. Uher, L. Iordanidis and M. G. Kanatzidis, Chem. Mater., 1997, 9, 1655
    52. R. Chmielowski, D. Péré, C. Bera, I. Opahle, W. Xie, S. Jacob, F. Capet, P. Roussel, A. Weidenkaff, G. K. H. Madsen and G. Dennler, J. Appl. Phys., 2015, 117, 125103
    53. N. Mahuli, D. Saha and S. K. Sarkar, J. Phys. Chem. C, 2017, 121, 8136
    54. D. S. Sanditov and V. N. Belomestnykh, Technical Physics, 2011, 56, 1619
    55. H. Koc, H. Ozisik, E. Deligöz, A. M. Mamedov and E. Ozbay, J. Mol. Model., 2014, 20, 2180
    56. X. Liu, D. Wang, H. Wu, J. Wang, Y. Zhang, G. Wang, S. J. Pennycook and L.-D. Zhao, Adv. Funct. Mater., 2019, 29, 1806558
    57. L.-D. Zhao, J. He, D. Berardan, Y. Lin, J.-F. Li, C.-W. Nan and N. Dragoe, Energy Environ. Sci., 2014, 7, 2900
    58. Y. Xiao, C. Chang, Y. L. Pei, D. Wu, K. L. Peng, X. Y. Zhou, S. K. Gong, J. Q. He, Y. S. Zhang, Z. Zeng and L. D. Zhao, Phys. Rev. B, 2016, 94, 125203
    59. X. Gao, M. Zhou, Y. Cheng and G. F. Ji, Philos. Mag., 2016, 96, 208
    60. Y. L. Pei, C. Chang, Z. Wang, M. J. Yin, M. H. Wu, G. J. Tan, H. J. Wu, Y. X. Chen, L. Zheng, S. K. Gong, T. J. Zhu, X. B. Zhao, L. Huang, J. Q. He, M. G. Kanatzidis and L. D. Zhao, J. Am. Chem. Soc., 2016, 138, 16364
    61. Y. Chen, D. Y. Wang, Y. L. Zhou, Q. T. Pang, J. W. Shao, G. T. Wang, J. F. Wang and L. D. Zhao, Front. Phys., 2019, 14, 13601
    62. E. Rathore, R. Juneja, S. P. Culver, N. Minafra, A. K. Singh, W. G. Zeier and K. Biswas, Chem. Mater., 2019, 31, 2106
    63. J. Yang, J. Yan, G. Liu, Z. Shi and G. Qiao, J. Eur. Ceram. Soc., 2019, 39, 1214
    64. W. Liu, C. F. Guo, M. Yao, Y. Lan, H. Zhang, Q. Zhang, S. Chen, C. P. Opeil and Z. Ren, Nano Energy, 2014, 4, 113
    65. R. Fortulan, S. Aminorroaya Yamini, C. Nwanebu, S. Li, T. Baba, M. J. Reece and T. Mori, ACS Appl. Energy Mater., 2022, 5, 3845
    66. Z.-H. Ge, B.-P. Zhang, Z.-X. Yu and J.-F. Li, J. Mater. Res., 2011, 26, 2711
    67. J. Pei, L.-J. Zhang, B.-P. Zhang, P.-P. Shang and Y.-C. Liu, J. Mater. Chem. C, 2017, 5, 12492
    68. Y.-X. Zhang, Z.-H. Ge and J. Feng, J. Alloys Compd., 2017, 727, 1076
    69. Z.-Y. Wang, J. Guo, J. Feng and Z.-H. Ge, J. Solid State. Chem., 2021, 297, 122043
    70. A. Melnikov, Met. Powder Rep., 2016, 71, 279
    71. S. M. de la Parra-Arciniega, N. A. Garcia-Gomez, L. L. Garza-Tovar, D. I. García-Gutiérrez and E. M. Sánchez, Ultrason. Sonochem., 2017, 36, 95
    72. F. Chen, Y. Cao and D. Jia, J. Colloid Interface Sci., 2013, 404, 110
    73. M. Ranjbar and M. A. Taher, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2016, 46, 1801
    74. J. Wu, F. Qin, G. Cheng, H. Li, J. Zhang, Y. Xie, H.-J. Yang, Z. Lu, X. Yu and R. Chen, J. Alloys Compd., 2011, 509, 2116
    75. J. Guo, L. Chen, Y. Wu, J. Xu, D.-H. Lu, J. Feng and Z.-H. Ge, Chem. Comm., 2020, 56, 11839
    76. Tarachand, V. Sharma, R. Bhatt, V. Ganesan and G. S, Okram, Nano Res., 2016, 9, 3291
    77. J. Guo, Z.-H. Ge, F. Qian, D.-H. Lu and J. Feng, J. Mater. Sci., 2020, 55, 263
    78. J. Yang, L. Yu, T. Wang, J. Yan, G. Liu, Z. Shi and G. Qiao, J. Alloys Compd., 2019, 780, 35
    79. X. Du, R. Shi, Y. Guo, Y. Wang, Y. Ma and Z. Yuan, Dalton Trans., 2017, 46, 2129
    80. Z. H. Ge, B. P. Zhang, Z. X. Yu, Y. Liu and J. F. Li, Acta Physica Sinica, 2012, 61, 048401
    81. M. C. Barma, B. D. Long, M. F. M. Sabri, S. Ramesh, R. Saidur, S. M. Said, K. Kimura, N. H. Hai, T. D. Huy and T. B. Trung, Powder Technol., 2016, 294, 348
    82. K. Biswas, L.-D. Zhao and M. G. Kanatzidis, Adv. Energy Mater., 2012, 2, 634
    83. X. Qu, Z. Gao, M. Liu, H. zhai, L. Shi, Y. Li and H. Song, Appl. Surf. Sci., 2020, 501, 144047
    84. Q. Yang, C. Hu, S. Wang, Y. Xi and K. Zhang, J. Phys. Chem. C, 2013, 117, 5515
    85. Z.-H. Ge, P. Qin, D. He, X. Chong, D. Feng, Y.-H. Ji, J. Feng and J. He, ACS Appl. Mater. Interfaces, 2017, 9, 4828
    86. H. Zhang, Y. J. Ji, X. Y. Ma, J. Xu and D. R. Yang, Nanotechnology, 2003, 14, 974
    87. T. Huang, Y. Li, X. Wu, K. Lv, Q. Li, M. Li, D. Du and H. Ye, Chinese J. Catal., 2018, 39, 718
    88. H. Chen, T. Huang, S. Zheng, T. Fang and L. Wang, Mater. Lett., 2016, 185, 67
    89. S. Sharma, H. H. Singh, S. Kumar and N. Khare, Nanotechnology, 2021, 32, 335705
    90. R. S. Lokhande, S. R. Thakur and P. A. Chate, Optik, 2020, 219, 165230
    91. S. A. Patil, Y.-T. Hwang, V. V. Jadhav, K. H. Kim and H.-S. Kim, J. Photochem. Photobiol. A, 2017, 332, 174
    92. H. Kim, J.-e. Park, K. Kim, M.-K. Han, S.-J. Kim and W. Lee, Chinese J. Chem., 2013, 31, 752
    93. J. Arumugam, A. D. Raj, A. A. Irudayaraj and M. Thambidurai, Mater. Lett., 2018, 220, 28
    94. Z.-H. Ge, B.-P. Zhang, Z.-X. Yu and B.-B. Jiang, CrystEngComm, 2012, 14, 2283
    95. Z. H. Ge and G. S. Nolas, Cryst, Growth Des., 2014, 14, 533
    96. Z. H. Ge, P. Qin, D. S. He, X. Y. Chong, D. Feng, Y. H. Ji, J. Feng and J. Q. He, ACS Appl. Mater. Interfaces, 2017, 9, 4828
    97. A. A. Rahman, R. Huang and L. Whittaker-Brooks, Chem. Mater., 2016, 28, 6544
    98. J. Wu, F. Qin, F. Y. F. Chan, G. Cheng, H. Li, Z. Lu and R. Chen, Mater. Lett., 2010, 64, 287
    99. D. C. Onwudiwe, J. Nano Res., 2019, 58, 80
    100. S. Ahmadi Atouei, A. A. Ranjbar andA. Rezania, Appl. Energy, 2017, 208, 332
    101. J. Shi, M. Qin, W. Aftab and R. Zou, Energy Stor. Mater., 2021, 41, 321
    102. Z. H. Ge, B. P. Zhang, Y. X. Chen, Z. X. Yu, Y. Liu and J. F. Li, Chem. Comm., 2011, 47, 12697
    103. H. Bai, X. Su, D. Yang, Q. Zhang, G. Tan, C. Uher, X. Tang and J. Wu, Adv. Funct. Mater., 2021, 31, 2100431
    104. J. Guo, Z. Y. Wang, Y. K. Zhu, L. Chen, J. Feng and Z. H. Ge, Rare Metals, 2022, 41, 931
    105. Y. X. Zhang, Z. H. Ge and J. Feng, J. Alloys Compd., 2017, 727, 1076
    106. W. Liu, K. C. Lukas, K. McEnaney, S. Lee, Q. Zhang, C. P. Opeil, G. Chen and Z. Ren, Energy Environ. Sci., 2013, 6, 552
    107. W. Zhao, J. Ding, Y. Zou, C.-a. Di and D. Zhu, Chem. Soc. Rev., 2020, 49, 7210
    108. Y. Huang, C. Chen, W. Zhang, X. Li, W. Xue, X. Wang, Y. Liu, H. Yao, Z. Zhang, Y. Chen, F. Cao, X. Liu, Y. Wang and Q. Zhang, Sci. China Mater., 2021, 64, 2541
    109. B. Wang, Y. Wang, S. Zheng, S. Liu, J. Li, S. Chang, T. An, W. Sun and Y. Chen, J. Alloys Compd., 2019, 806, 676
    110. S. Hiroi, S. Nishino, S. Choi, O. Seo, J. Kim, Y. Chen, C. Song, A. Tayal, O. Sakata and T. Takeuchi, J. Appl. Phys., 2019, 125, 225101
    111. C.-C. Lin, R. Lydia, J. H. Yun, H. S. Lee and J. S. Rhyee, Chem. Mater., 2017, 29, 5344
    112. J. L. Lensch-Falk, J. D. Sugar, M. A. Hekmaty and D. L. Medlin, J. Alloys Compd., 2010, 504, 37
    113. Z. H. Ge, B. P. Zhang, Y. Liu and J. F. Li, Phys. Chem. Chem. Phys., 2012, 14, 4475
    114. Z.-H. Ge, B.-P. Zhang, Y.-Q. Yu and P.-P. Shang, J. Alloys Compd., 2012, 514, 205
    115. L.-J. Zhang, B.-P. Zhang, Z.-H. Ge, C.-G. Han, N. Chen and J.-F. Li, Intermetallics, 2013, 36, 96
    116. Y. Q. Yu, B. P. Zhang, Z. H. Ge, P. P. Shang and Y. X. Chen, Mater. Chem. Phys., 2011, 131, 216
    117. L. J. Zhang, B. P. Zhang, Z. H. Ge and C. G. Han, Solid State Commun., 2013, 162, 48
    118. M. K. Han, S. Kim, H. Y. Kim and S. J. Kim, RSC Adv., 2013, 3, 4673
    119. Z. Liu, Y. Pei, H. Geng, J. Zhou, X. Meng, W. Cai, W. Liu and J. Sui, Nano Energy, 2015, 13, 554
    120. X. Du, R. Shi, Y. Ma, F. Cai, X. Wang and Z. Yuan, RSC Adv., 2015, 5, 31004
    121. J. Yang, G. Liu, J. Yan, X. Zhang, Z. Shi and G. Qiao, Alloys Compd., 2017, 728, 351
    122. Y. Guo, X. Du, Y. Wang and Z. Yuan, J. Alloys Compd., 2017, 717, 177
    123. F. Fitriani, S. M. Said, S. Rozali, M. F. M. Salleh, M. F. M. Sabri, D. L. Bui, T. Nakayama, O. Raihan, M. M. I. Megat Hasnan, M. B. A. Bashir and F. Kamal, Electron. Mater. Lett., 2018, 14, 689
    124. Y. Chen, D. Wang, Y. Zhou, Q. Pang, J. Shao, G. Wang, J. Wang and L.-D. Zhao, Front. Phys., 2018, 14, 13601
    125. J. Yan, J. Yang, B. Ge, G. Liu, Z. Shi, Z. Duan and G. Qiao, J. Electron. Mater., 2019, 48, 503
    126. Y. Wu, Q. Lou, Y. Qiu, J. Guo, Z.-Y. Mei, X. Xu, J. Feng, J. He and Z.-H. Ge, Inorg. Chem. Front., 2019, 6, 1374
    127. J. Guo, Y.-K. Zhu, L. Chen, Z.-Y. Wang, Z.-H. Ge and J. Feng, J. Mater. Sci. Technol., 2022, 100, 51
    128. J. Guo, Z.-Y. Wang, Y.-K. Zhu, L. Chen, J. Feng and Z.-H. Ge, Rare Metals, 2022, 41, 931
    129. Z. Li, C. Xiao, H. Zhu and Y. Xie, J. Am. Chem. Soc., 2016, 138, 14810
    130. T. Zhu, L. Hu, X. Zhao and J. He, Adv. Sci., 2016, 3, 1600004
    131. Y. Yu, S. Zhang, A. M. Mio, B. Gault, A. Sheskin, C. Scheu, D. Raabe, F. Zu, M. Wuttig, Y. Amouyal and O. Cojocaru-Mirédin, ACS Appl. Mater. Interfaces, 2018, 10, 3609
    132. Z. Chen, B. Ge, W. Li, S. Lin, J. Shen, Y. Chang, R. Hanus, G. J. Snyder and Y. Pei, Nat. Commun., 2017, 8, 13828
    133. X. Meng, Z. Liu, B. Cui, D. Qin, H. Geng, W. Cai, L. Fu, J. He, Z. Ren and J. Sui, Adv. Energy Mater., 2017, 7, 1602582
    134. Y. Jian, Y. Junnan, L. Guiwu, S. Zhongqi and Q. Guanjun, J. Eur. Ceram. Soc., 2019, 39, 1214
    135. F. Zhang, D. Wu and J. He, Materials Lab, 2022, 1, 220012
    136. J. Zhang, T. Zhu, C. Zhang, Y. Yan, G. Tan, W. Liu, X. Su and X. Tang, J. Alloys Compd., 2021, 881, 160639
    137. H. Iwasaki, I. Kimura, T. Murakami and H. Kim, Physica B Condens. Matter, 2015, 472, 91
    138. D. P. Wong, W. L. Chien, C. Y. Huang, C. E. Chang, A. Ganguly, L. M. Lyu, J. S. Hwang, L. C. Chen and K. H. Chen, RSC Adv., 2016, 6, 98952
    139. A. Nozariasbmarz, B. Poudel, W. Li, H. B. Kang, H. Zhu and S. Priya, iScience, 2020, 23, 101340
    140. I. Malik, T. Srivastava, K. K. Surthi, C. Gayner and K. K. Kar, Mater. Chem. Phys., 2020, 255, 123598
    141. S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder and S. W. Kim, Science, 2015, 348, 109
    142. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B, 1993, 47, 16631
    143. B. Qin and L.-D. Zhao, Materials Lab, 2022, 1, 220004
    144. J. Guo, Q. Lou, Y. Qiu, Z.-Y. Wang, Z.-H. Ge, J. Feng and J. He, Appl. Surf. Sci., 2020, 520, 146341
    145. B. Xu, T. Feng, M. T. Agne, Q. Tan, Z. Li, K. Imasato, L. Zhou, J.-H. Bahk, X. Ruan, G. J. Snyder and Y. Wu, Angew. Chem. Int. Ed., 2018, 57, 2413
    146. D. Li, X. Y. Qin, J. Zhang and H. J. Li, Physics Letters A, 2006, 348, 379
    147. Y. Zhong, J. Tang, H. Liu, Z. Chen, L. Lin, D. Ren, B. Liu and R. Ang, ACS Appl. Mater. Interfaces, 2020, 12, 49323
    148. S. Sarkar, X. Hua, S. Hao, X. Zhang, T. P. Bailey, T. J. Slade, P. Yasaei, R. J. Korkosz, G. Tan, C. Uher, V. P. Dravid, C. Wolverton and M. G. Kanatzidis, Chem. Mater., 2021, 33, 1842
    149. J. P. Heremans, B. Wiendlocha and A. M. Chamoire, Energy Environ. Sci., 2012, 5, 5510
    150. Z.-H. Ge, B.-P. Zhang and J.-F. Li, J. Mater. Chem., 2012, 22, 17589
    151. X. Li, L. L. Xi and J. Yang, J. Inorg. Mater., 2019, 34, 236
    152. Y. Iwasaki, R. Sawada, V. Stanev, M. Ishida, A. Kirihara, Y. Omori, H. Someya, I. Takeuchi, E. Saitoh and S. Yorozu, NPJ Comput. Mater., 2019, 5, 103
    153. Y. Iwasaki, I. Takeuchi, V. Stanev, A. G. Kusne, M. Ishida, A. Kirihara, K. Ihara, R. Sawada, K. Terashima, H. Someya, K.-i. Uchida, E. Saitoh and S. Yorozu, Sci. Rep., 2019, 9, 2751
    154. M. Hong, W. Lyu, Y. Wang, J. Zou and Z.-G. Chen, J. Am. Chem. Soc., 2020, 142, 2672
    155. G. Xing, J. Sun, Y. Li, X. Fan, W. Zheng and D. J. Singh, Phys. Rev. Mater., 2017, 1, 065405
    156. D. Nita, Materials Lab, 2022, 1, 220001
    157. C. Xiao, K. Li, J. Zhang, W. Tong, Y. Liu, Z. Li, P. Huang, B. Pan, H. Su and Y. Xie, Mater. Horizons, 2014, 1, 81
    158. L. Hu, Y. Zhang, H. Wu, J. Li, Y. Li, M. Mckenna, J. He, F. Liu, S. J. Pennycook and X. Zeng, Adv. Energy Mater., 2018, 8, 1802116
    159. M. Ruan, F. Li, Y. Chen, Z. Zheng and P. Fan, J. Alloys Compd., 2020, 849, 156677
    160. S.-J. Joo, B. Ryu, J.-H. Son, J. E. Lee, B.-K. Min and B.-S. Kim, J. Alloys Compd., 2019, 783, 448
    161. F. Li, M. Ruan, B. Jabar, C. Liang, Y. Chen, D. Ao, Z. Zheng, P. Fan and W. Liu, Nano Energy, 2021, 88, 106273
    162. B. Jabar, F. Li, Z. Zheng, A. Mansoor, Y. Zhu, C. Liang, D. Ao, Y. Chen, G. Liang, P. Fan and W. Liu, Nat. Commun., 2021, 12, 7192
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(17)

Tables(2)

Information

Article Metrics

Article views(4676) PDF downloads(1408) Citation(0)

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint