Citation: | Hongyu Chen, Peixin Qin, Han Yan, Zexin Feng, Xiaorong Zhou, et al. Noncollinear Antiferromagnetic Spintronics. Materials Lab 2022, 1, 220032. doi: 10.54227/mlab.20220032 |
Antiferromagnetic spintronics is one of the leading candidates for next-generation electronics. Among abundant antiferromagnets, noncollinear antiferromagnets are promising for achieving practical applications due to coexisting ferromagnetic and antiferromagnetic merits. In this perspective, we briefly review the recent progress in the emerging noncollinear antiferromagnetic spintronics from fundamental physics to device applications. Current challenges and future research directions for this field are also discussed.
1. | I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys., 2004, 76, 323 |
2. | C. Chappert, A. Fert, and F. N. Van Dau, Nat. Mater., 2007, 6, 813 |
3. | S. D. Bader, and S. S. P. Parkin, Annu. Rev. Condens. Matter Phys., 2010, 1, 71 |
4. | M. M. Waldrop, Nature, 2016, 530, 144 |
5. | P. Wadley, B. Howells, J. Železný, C. Andrews, V. Hills, R. P. Campion, V. Novák, K. Olejník, F. Maccherozzi, S. S. Dhesi, S. Y. Martin, T. Wagner, J. Wunderlich, F. Freimuth, Y. Mokrousov, J. Kuneš, J. S. Chauhan, M. J. Grzybowski, A. W. Rushforth, K. W. Edmonds, B. L. Gallagher, and T. Jungwirth, Science, 2016, 351, 587 |
6. | Z. Feng, H. Yan, and Z. Liu, Adv. Electron. Mater., 2019, 5, 1800466 |
7. | Z. Liu, Z. Feng, H. Yan, X. Wang, X. Zhou, P. Qin, H. Guo, R. Yu, and C. Jiang, Adv. Electron. Mater., 2019, 5, 1900176 |
8. | H. Yan, Z. Feng, P. Qin, X. Zhou, H. Guo, X. Wang, H. Chen, X. Zhang, H. Wu, C. Jiang, and Z. Liu, Adv. Mater., 2020, 32, 1905603 |
9. | T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, Nat. Nanotechnol., 2016, 11, 231 |
10. | V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, Rev. Mod. Phys., 2018, 90, 015005 |
11. | J. Železný, H. Gao, K. Výborný, J. Zemen, J. Mašek, A. Manchon, J. Wunderlich, J. Sinova, and T. Jungwirth, Phys. Rev. Lett., 2014, 113, 157201 |
12. | P. Wadley, V. Novák, R. P. Campion, C. Rinaldi, X. Martí, H. Reichlová, J. Železný, J. Gazquez, M. A. Roldan, M. Varela, D. Khalyavin, S. Langridge, D. Kriegner, F. Máca, J. Mašek, R. Bertacco, V. Holý, A. W. Rushforth, K. W. Edmonds, B. L. Gallagher, C. T. Foxon, J. Wunderlich, and T. Jungwirth, Nat. Commun., 2013, 4, 2322 |
13. | V. M. T. S. Barthem, C. V. Colin, H. Mayaffre, M. H. Julien, and D. Givord, Nat. Commun., 2013, 4, 2892 |
14. | S. Y. Bodnar, L. Šmejkal, I. Turek, T. Jungwirth, O. Gomonay, J. Sinova, A. A. Sapozhnik, H. J. Elmers, M. Kläui, and M. Jourdan, Nat. Commun., 2018, 9, 348 |
15. | E. Krén, and G. Kádár, Solid State Commun., 1970, 8, 1653 |
16. | N. Yamada, H. Sakai, H. Mori, and T. Ohoyama, Physica B+C, 1988, 149, 311 |
17. | J. Sticht, K. H. H ck, and J. K bler, J. Phys.: Condens. Matter, 1989, 1, 8155 |
18. | E. Krén, G. Kádár, L. Pál, J. Sólyom, and P. Szabó, Phys. Lett., 1966, 20, 331 |
19. | E. Krén, G. Kádár, L. Pál, J. Sólyom, P. Szabó, and T. Tarnóczi, Phys. Rev., 1968, 171, 574 |
20. | I. Tomeno, H. N. Fuke, H. Iwasaki, M. Sahashi, and Y. Tsunoda, J. Appl. Phys., 1999, 86, 3853 |
21. | E. F. Bertaut, D. Fruchart, J. P. Bouchaud, and R. Fruchart, Solid State Commun., 1968, 6, 251 |
22. | D. Fruchart, and E. F. Bertaut, J. Phys. Soc. Jpn., 1978, 44, 781 |
23. | K. Shi, Y. Sun, J. Yan, S. Deng, L. Wang, H. Wu, P. Hu, H. Lu, M. I. Malik, Q. Huang, and C. Wang, Adv. Mater., 2016, 28, 3761 |
24. | N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys., 2010, 82, 1539 |
25. | H. Chen, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett., 2014, 112, 017205 |
26. | J. Kübler, and C. Felser, EPL, 2014, 108, 67001 |
27. | S. Nakatsuji, N. Kiyohara, and T. Higo, Nature, 2015, 527, 212 |
28. | T. Nagamiya, S. Tomiyoshi, and Y. Yamaguchi, Solid State Commun., 1982, 42, 385 |
29. | T. Miyasato, N. Abe, T. Fujii, A. Asamitsu, S. Onoda, Y. Onose, N. Nagaosa, and Y. Tokura, Phys. Rev. Lett., 2007, 99, 086602 |
30. | N. Kiyohara, T. Tomita, and S. Nakatsuji, Phys. Rev. Appl., 2016, 5, 064009 |
31. | A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C. Komarek, C. Shekhar, N. Kumar, W. Schnelle, J. Kübler, C. Felser, and S. S. P. Parkin, Sci. Adv., 2016, 2, e1501870 |
32. | Z. Q. Liu, H. Chen, J. M. Wang, J. H. Liu, K. Wang, Z. X. Feng, H. Yan, X. R. Wang, C. B. Jiang, J. M. D. Coey, and A. H. MacDonald, Nat. Electron., 2018, 1, 172 |
33. | D. Boldrin, I. Samathrakis, J. Zemen, A. Mihai, B. Zou, F. Johnson, B. D. Esser, D. W. McComb, P. K. Petrov, H. Zhang, and L. F. Cohen, Phys. Rev. Mater., 2019, 3, 094409 |
34. | G. Gurung, D.-F. Shao, T. R. Paudel, and E. Y. Tsymbal, Phys. Rev. Mater., 2019, 3, 044409 |
35. | V. T. N. Huyen, M.-T. Suzuki, K. Yamauchi, and T. Oguchi, Phys. Rev. B, 2019, 100, 094426 |
36. | X. Zhou, J.-P. Hanke, W. Feng, F. Li, G.-Y. Guo, Y. Yao, S. Blügel, and Y. Mokrousov, Phys. Rev. B, 2019, 99, 104428 |
37. | H. Iwaki, M. Kimata, T. Ikebuchi, Y. Kobayashi, K. Oda, Y. Shiota, T. Ono, and T. Moriyama, Appl. Phys. Lett., 2020, 116, 022408 |
38. | Y. You, H. Bai, X. Chen, Y. Zhou, X. Zhou, F. Pan, and C. Song, Appl. Phys. Lett., 2020, 117, 222404 |
39. | T. Higo, D. Qu, Y. Li, C. L. Chien, Y. Otani, and S. Nakatsuji, Appl. Phys. Lett., 2018, 113, 202402 |
40. | R. Miki, K. Zhao, T. Hajiri, P. Gegenwart, and H. Asano, J. Appl. Phys., 2020, 127, 113907 |
41. | J. M. Taylor, A. Markou, E. Lesne, P. K. Sivakumar, C. Luo, F. Radu, P. Werner, C. Felser, and S. S. P. Parkin, Phys. Rev. B, 2020, 101, 094404 |
42. | G.-Y. Guo, and T.-C. Wang, Phys. Rev. B, 2017, 96, 224415 |
43. | M. Ikhlas, T. Tomita, T. Koretsune, M.-T. Suzuki, D. Nishio-Hamane, R. Arita, Y. Otani, and S. Nakatsuji, Nat. Phys., 2017, 13, 1085 |
44. | X. Li, L. Xu, L. Ding, J. Wang, M. Shen, X. Lu, Z. Zhu, and K. Behnia, Phys. Rev. Lett., 2017, 119, 056601 |
45. | D. Hong, N. Anand, C. Liu, H. Liu, I. Arslan, J. E. Pearson, A. Bhattacharya, and J. S. Jiang, Phys. Rev. Mater., 2020, 4, 094201 |
46. | J. Železný, Y. Zhang, C. Felser, and B. Yan, Phys. Rev. Lett., 2017, 119, 187204 |
47. | J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Rev. Mod. Phys., 2015, 87, 1213 |
48. | G. Gurung, D.-F. Shao, and E. Y. Tsymbal, Phys. Rev. Mater., 2021, 5, 124411 |
49. | S. Ghosh, A. Manchon, and J. Železný, Phys. Rev. Lett., 2022, 128, 097702 |
50. | J. Dong, X. Li, G. Gurung, M. Zhu, P. Zhang, F. Zheng, E. Y. Tsymbal, and J. Zhang, Phys. Rev. Lett., 2022, 128, 197201 |
51. | M. Kimata, H. Chen, K. Kondou, S. Sugimoto, P. K. Muduli, M. Ikhlas, Y. Omori, T. Tomita, A. H. MacDonald, S. Nakatsuji, and Y. Otani, Nature, 2019, 565, 627 |
52. | A. Mook, R. R. Neumann, A. Johansson, J. Henk, and I. Mertig, Phys. Rev. Res., 2020, 2, 023065 |
53. | J. Holanda, H. Saglam, V. Karakas, Z. Zang, Y. Li, R. Divan, Y. Liu, O. Ozatay, V. Novosad, J. E. Pearson, and A. Hoffmann, Phys. Rev. Lett., 2020, 124, 087204 |
54. | K. Kondou, H. Chen, T. Tomita, M. Ikhlas, T. Higo, A. H. MacDonald, S. Nakatsuji, and Y. Otani, Nat. Commun., 2021, 12, 6491 |
55. | X. Wang, Z. Feng, P. Qin, H. Yan, X. Zhou, H. Guo, Z. Leng, W. Chen, Q. Jia, Z. Hu, H. Wu, X. Zhang, C. Jiang, and Z. Liu, Acta Mater., 2019, 181, 537 |
56. | H. Guo, Z. Feng, H. Yan, J. Liu, J. Zhang, X. Zhou, P. Qin, J. Cai, Z. Zeng, X. Zhang, X. Wang, H. Chen, H. Wu, C. Jiang, and Z. Liu, Adv. Mater., 2020, 32, 2002300 |
57. | P. Qin, Z. Feng, X. Zhou, H. Guo, J. Wang, H. Yan, X. Wang, H. Chen, X. Zhang, H. Wu, Z. Zhu, and Z. Liu, ACS Nano, 2020, 14, 6242 |
58. | S. Miwa, S. Iihama, T. Nomoto, T. Tomita, T. Higo, M. Ikhlas, S. Sakamoto, Y. Otani, S. Mizukami, R. Arita, and S. Nakatsuji, Small Sci., 2021, 1, 2000062 |
59. | Y. Zhang, Y. Sun, H. Yang, J. Železný, S. P. P. Parkin, C. Felser, and B. Yan, Phys. Rev. B, 2017, 95, 075128 |
60. | Y. Zhang, J. Železný, Y. Sun, J. van den Brink, and B. Yan, New J. Phys., 2018, 20, 073028 |
61. | O. Busch, B. Göbel, and I. Mertig, Phys. Rev. B, 2021, 104, 184423 |
62. | W. Zhang, W. Han, S.-H. Yang, Y. Sun, Y. Zhang, B. Yan, and S. S. P. Parkin, Sci. Adv., 2016, 2, e1600759 |
63. | P. K. Muduli, T. Higo, T. Nishikawa, D. Qu, H. Isshiki, K. Kondou, D. Nishio-Hamane, S. Nakatsuji, and Y. Otani, Phys. Rev. B, 2019, 99, 184425 |
64. | B. B. Singh, K. Roy, J. A. Chelvane, and S. Bedanta, Phys. Rev. B, 2020, 102, 174444 |
65. | T. Yu, H. Wu, H. He, C. Guo, C. Fang, P. Zhang, K. L. Wong, S. Xu, X. Han, and K. L. Wang, APL Mater., 2021, 9, 041111 |
66. | Y. Liu, Y. Liu, M. Chen, S. Srivastava, P. He, K. L. Teo, T. Phung, S.-H. Yang, and H. Yang, Phys. Rev. Appl., 2019, 12, 064046 |
67. | T. Nan, C. X. Quintela, J. Irwin, G. Gurung, D. F. Shao, J. Gibbons, N. Campbell, K. Song, S. Y. Choi, L. Guo, R. D. Johnson, P. Manuel, R. V. Chopdekar, I. Hallsteinsen, T. Tybell, P. J. Ryan, J. W. Kim, Y. Choi, P. G. Radaelli, D. C. Ralph, E. Y. Tsymbal, M. S. Rzchowski, and C. B. Eom, Nat. Commun., 2020, 11, 4671 |
68. | J. Zhou, X. Shu, Y. Liu, X. Wang, W. Lin, S. Chen, L. Liu, Q. Xie, T. Hong, P. Yang, B. Yan, X. Han, and J. Chen, Phys. Rev. B, 2020, 101, 184403 |
69. | H. Bai, X. F. Zhou, H. W. Zhang, W. W. Kong, L. Y. Liao, X. Y. Feng, X. Z. Chen, Y. F. You, Y. J. Zhou, L. Han, W. X. Zhu, F. Pan, X. L. Fan, and C. Song, Phys. Rev. B, 2021, 104, 104401 |
70. | Y. You, H. Bai, X. Feng, X. Fan, L. Han, X. Zhou, Y. Zhou, R. Zhang, T. Chen, F. Pan, and C. Song, Nat. Commun., 2021, 12, 6524 |
71. | T. Higo, H. Man, D. B. Gopman, L. Wu, T. Koretsune, O. M. J. van ’t Erve, Y. P. Kabanov, D. Rees, Y. Li, M.-T. Suzuki, S. Patankar, M. Ikhlas, C. L. Chien, R. Arita, R. D. Shull, J. Orenstein, and S. Nakatsuji, Nat. Photonics, 2018, 12, 73 |
72. | A. L. Balk, N. H. Sung, S. M. Thomas, P. F. S. Rosa, R. D. McDonald, J. D. Thompson, E. D. Bauer, F. Ronning, and S. A. Crooker, Appl. Phys. Lett., 2019, 114, 032401 |
73. | M. Wu, H. Isshiki, T. Chen, T. Higo, S. Nakatsuji, and Y. Otani, Appl. Phys. Lett., 2020, 116, 132408 |
74. | H. C. Zhao, H. Xia, Z. R. Zhao, T. Y. He, G. Ni, L. Y. Chen, and H. B. Zhao, AIP Adv., 2021, 11, 055003 |
75. | T. Uchimura, J.-Y. Yoon, Y. Sato, Y. Takeuchi, S. Kanai, R. Takechi, K. Kishi, Y. Yamane, S. DuttaGupta, J. i. Ieda, H. Ohno, and S. Fukami, Appl. Phys. Lett., 2022, 120, 172405 |
76. | S. Tomiyoshi, Y. Yamaguchi, and T. Nagamiya, J. Magn. Magn. Mater., 1983, 31−34, 629 |
77. | H. Chen, T.-C. Wang, D. Xiao, G.-Y. Guo, Q. Niu, and A. H. MacDonald, Phys. Rev. B, 2020, 101, 104418 |
78. | H. Tsai, T. Higo, K. Kondou, T. Nomoto, A. Sakai, A. Kobayashi, T. Nakano, K. Yakushiji, R. Arita, S. Miwa, Y. Otani, and S. Nakatsuji, Nature, 2020, 580, 608 |
79. | X. Han, X. Wang, C. Wan, G. Yu, and X. Lv, Appl. Phys. Lett., 2021, 118, 120502 |
80. | Y. Takeuchi, Y. Yamane, J.-Y. Yoon, R. Itoh, B. Jinnai, S. Kanai, J. i. Ieda, S. Fukami, and H. Ohno, Nat. Mater., 2021, 20, 1364 |
81. | G. Q. Yan, S. Li, H. Lu, M. Huang, Y. Xiao, L. Wernert, J. A. Brock, E. E. Fullerton, H. Chen, H. Wang, and C. R. Du, Adv. Mater., 2022, 34, 2200327 |
82. | T. Hajiri, S. Ishino, K. Matsuura, and H. Asano, Appl. Phys. Lett., 2019, 115, 052403 |
83. | S. Arpaci, V. Lopez-Dominguez, J. Shi, L. Sánchez-Tejerina, F. Garesci, C. Wang, X. Yan, V. K. Sangwan, M. A. Grayson, M. C. Hersam, G. Finocchio, and P. Khalili Amiri, Nat. Commun., 2021, 12, 3828 |
84. | T. Hajiri, K. Matsuura, K. Sonoda, E. Tanaka, K. Ueda, and H. Asano, Phys. Rev. Appl., 2021, 16, 024003 |
85. | Z. Q. Liu, L. Li, Z. Gai, J. D. Clarkson, S. L. Hsu, A. T. Wong, L. S. Fan, M. W. Lin, C. M. Rouleau, T. Z. Ward, H. N. Lee, A. S. Sefat, H. M. Christen, and R. Ramesh, Phys. Rev. Lett., 2016, 116, 097203 |
86. | H. Yan, Z. Feng, S. Shang, X. Wang, Z. Hu, J. Wang, Z. Zhu, H. Wang, Z. Chen, H. Hua, W. Lu, J. Wang, P. Qin, H. Guo, X. Zhou, Z. Leng, Z. Liu, C. Jiang, M. Coey, and Z. Liu, Nat. Nanotechnol., 2019, 14, 131 |
87. | Z. Feng, H. Yan, X. Wang, H. Guo, P. Qin, X. Zhou, Z. Chen, H. Wang, Z. Jiao, Z. Leng, Z. Hu, X. Zhang, H. Wu, H. Chen, J. Wang, T. Zhang, C. Jiang, and Z. Liu, Adv. Electron. Mater., 2020, 6, 1901084 |
88. | Z. Feng, P. Qin, Y. Yang, H. Yan, H. Guo, X. Wang, X. Zhou, Y. Han, J. Yi, D. Qi, X. Yu, M. B. H. Breese, X. Zhang, H. Wu, H. Chen, H. Xiang, C. Jiang, and Z. Liu, Acta Mater., 2021, 204, 116516 |
89. | Z.-P. Zhao, Q. Guo, F.-H. Chen, K.-W. Zhang, and Y. Jiang, Rare Metals, 2021, 40, 2862 |
90. | C. Singh, V. Singh, G. Pradhan, V. Srihari, H. K. Poswal, R. Nath, A. K. Nandy, and A. K. Nayak, Phys. Rev. Res., 2020, 2, 043366 |
91. | D. Boldrin, F. Johnson, R. Thompson, A. P. Mihai, B. Zou, J. Zemen, J. Griffiths, P. Gubeljak, K. L. Ormandy, P. Manuel, D. D. Khalyavin, B. Ouladdiaf, N. Qureshi, P. Petrov, W. Branford, and L. F. Cohen, Adv. Funct. Mater., 2019, 29, 1902502 |
92. | F. Johnson, D. Boldrin, J. Zemen, D. Pesquera, J. Kim, X. Moya, H. Zhang, H. K. Singh, I. Samathrakis, and L. F. Cohen, Appl. Phys. Lett., 2021, 119, 222401 |
93. | D. Boldrin, A. P. Mihai, B. Zou, J. Zemen, R. Thompson, E. Ware, B. V. Neamtu, L. Ghivelder, B. Esser, D. W. McComb, P. Petrov, and L. F. Cohen, ACS Appl. Mater. Interfaces, 2018, 10, 18863 |
94. | A. Kirilyuk, A. V. Kimel, and T. Rasing, Rev. Mod. Phys., 2010, 82, 2731 |
95. | E. Beaurepaire, J. C. Merle, A. Daunois, and J. Y. Bigot, Phys. Rev. Lett., 1996, 76, 4250 |
96. | A. V. Kimel, A. Kirilyuk, A. Tsvetkov, R. V. Pisarev, and T. Rasing, Nature, 2004, 429, 850 |
97. | A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, Phys. Rev. Lett., 2012, 108, 127205 |
98. | S. Mangin, M. Gottwald, C. H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, Nat. Mater., 2014, 13, 286 |
99. | S. Manz, M. Matsubara, T. Lottermoser, J. Büchi, A. Iyama, T. Kimura, D. Meier, and M. Fiebig, Nat. Photonics, 2016, 10, 653 |
100. | K. Olejník, T. Seifert, Z. Kašpar, V. Novák, P. Wadley, R. P. Campion, M. Baumgartner, P. Gambardella, P. Němec, J. Wunderlich, J. Sinova, P. Kužel, M. Müller, T. Kampfrath, and T. Jungwirth, Sci. Adv., 2018, 4, eaar3566 |
101. | C. Banerjee, N. Teichert, K. E. Siewierska, Z. Gercsi, G. Y. P. Atcheson, P. Stamenov, K. Rode, J. M. D. Coey, and J. Besbas, Nat. Commun., 2020, 11, 4444 |
102. | Z. Hu, J. Besbas, R. Smith, N. Teichert, G. Atcheson, K. Rode, P. Stamenov, and J. M. D. Coey, Appl. Phys. Lett., 2022, 120, 112401 |
103. | C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, Phys. Rev. Lett., 2007, 99, 047601 |
104. | T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, U. Atxitia, O. Chubykalo-Fesenko, S. El Moussaoui, L. Le Guyader, E. Mengotti, L. J. Heyderman, F. Nolting, A. Tsukamoto, A. Itoh, D. Afanasiev, B. A. Ivanov, A. M. Kalashnikova, K. Vahaplar, J. Mentink, A. Kirilyuk, T. Rasing, and A. V. Kimel, Nat. Commun., 2012, 3, 666 |
105. | C.-H. Lambert, S. Mangin, B. S. D. C. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, Science, 2014, 345, 1337 |
106. | Y. Yang, R. B. Wilson, J. Gorchon, C.-H. Lambert, S. Salahuddin, and J. Bokor, Sci. Adv., 2017, 3, e1603117 |
107. | H. Reichlova, T. Janda, J. Godinho, A. Markou, D. Kriegner, R. Schlitz, J. Zelezny, Z. Soban, M. Bejarano, H. Schultheiss, P. Nemec, T. Jungwirth, C. Felser, J. Wunderlich, and S. T. B. Goennenwein, Nat. Commun., 2019, 10, 5459 |
108. | H. Tsai, T. Higo, K. Kondou, S. Sakamoto, A. Kobayashi, T. Matsuo, S. Miwa, Y. Otani, and S. Nakatsuji, Small Sci., 2021, 1, 2000025 |
109. | M. Ikhlas, S. Dasgupta, F. Theuss, T. Higo, Shunichiro Kittaka, B. J. Ramshaw, O. Tchernyshyov, C. W. Hicks, and S. Nakatsuji, 2022, arXiv: 2206.00793. |
110. | R. D. d. Reis, M. Ghorbani Zavareh, M. O. Ajeesh, L. O. Kutelak, A. S. Sukhanov, S. Singh, J. Noky, Y. Sun, J. E. Fischer, K. Manna, C. Felser, and M. Nicklas, Phys. Rev. Mater., 2020, 4, 051401 |
111. | P. Qin, H. Yan, B. Fan, Z. Feng, X. Zhou, X. Wang, H. Chen, Z. Meng, W. Duan, P. Tang, and Z. Liu, Adv. Mater., 2022, 34, 2200487 |
112. | X. Marti, I. Fina, C. Frontera, J. Liu, P. Wadley, Q. He, R. J. Paull, J. D. Clarkson, J. Kudrnovský, I. Turek, J. Kuneš, D. Yi, J. H. Chu, C. T. Nelson, L. You, E. Arenholz, S. Salahuddin, J. Fontcuberta, T. Jungwirth, and R. Ramesh, Nat. Mater., 2014, 13, 367 |
113. | S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S.-H. Yang, Nat. Mater., 2004, 3, 862 |
114. | X. Zhou, B. Song, X. Chen, Y. You, S. Ruan, H. Bai, W. Zhang, G. Ma, J. Yao, F. Pan, Z. Jin, and C. Song, Appl. Phys. Lett., 2019, 115, 182402 |
115. | C. Li, B. Fang, L. Zhang, Q. Chen, X. Xie, N. Xu, Z. Zeng, Z. Wang, L. Fang, and T. Jiang, Phys. Rev. Appl., 2021, 16, 024058 |
116. | T. Matsuda, N. Kanda, T. Higo, N. P. Armitage, S. Nakatsuji, and R. Matsunaga, Nat. Commun., 2020, 11, 909 |
117. | A. Shukla, and S. Rakheja, Phys. Rev. Appl., 2022, 17, 034037 |
118. | P.-X. Qin, H. Yan, X.-N. Wang, Z.-X. Feng, H.-X. Guo, X.-R. Zhou, H.-J. Wu, X. Zhang, Z.-G.-G. Leng, H.-Y. Chen, and Z.-Q. Liu, Rare Metals, 2020, 39, 95 |
119. | T. Higo, K. Kondou, T. Nomoto, M. Shiga, S. Sakamoto, X. Chen, D. Nishio-Hamane, R. Arita, Y. Otani, S. Miwa, and S. Nakatsuji, Nature, 2022, 607, 474 |
120. | S. Dasgupta, 2022, arXiv: 2206.02219. |
121. | S. Dasgupta, and O. A. Tretiakov, 2022, arXiv: 2202.06882. |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Conceptual schematics for some major exotic physical phenomena and spin manipulation methods relevant to noncollinear antiferromagnetic spintronics.
(a) The magnetization (M) curves and (b) the Hall conductivity (σH) versus the applied field (B) at 300 K of Mn3Sn measured in B || [2
(a) Scanning electron microscope image of the spin-accumulation device. The red dashed line denotes the Mn3Sn single crystal while the blue square is the ferromagnetic NiFe electrode. The non-magnetic Cu leads are indicated by the brown areas. (b) Schematic of the measurement geometry. The electrical current (I) was applied along [2
(a) The optical photo of the Mn3Sn/nonmagnetic layer (Pt, W, or Cu) devices (left) and the schematic of spin-orbit-torque (SOT) switching (right). Write and read currents and the magnetic bias field (
(a) The schematic of the polarization-resolved measurement setup. WGP denotes the wire-grid polarizer. (b) The real- and imaginary-part of the Hall conductivity (σxy) spectra for Mn3+xSn1−x films. The solid curves display the low-frequency THz-time-domain spectroscopy for x = 0.02 on a SiO2 substrate while the open circles show the broadband spectrum for x = 0.08 on a Si substrate. Reproduced under terms of the CC-BY license.[116] Copyright 2020, Springer Nature.