Citation: | Siqi Jiang, Dayong Ren, Yaojie Lei, Hongli Suo, Wei-Hong Lai. Mechanisms of oxygen evolution reaction in metal oxides: adsorbate evolution mechanism versus lattice oxygen mechanism[J]. Materials Lab, 2023, 2(2): 220054. doi: 10.54227/mlab.20220054 |
Water electrolysis provides a promising technology for hydrogen production, but the sluggish four-electron conversion-process of the oxygen evolution reaction results in high overpotential and a low efficiency of water splitting. To rationalize and improve the performance of oxygen evolution reaction, it is crucial to understand the electrochemical mechanisms occurring in cells and monitor the structural changes of newly developed catalysts. As the most recognized mechanisms, the adsorbate evolution mechanism and the lattice oxygen mechanism have been utilized to explain the physical and chemical behaviors of the oxygen evolution reaction. Thus, we herein provide a perspective on these two paths by summarizing the recent progresses in oxygen evolution reactions and building fundamental connections between material designs and the two mechanisms. Insights from this work offer solution to address the current challenges and limitations for the water oxidation.
1. | M. Gong, H. Dai, Nano. Res., 2014, 8, 23 |
2. | S. Chu, Y. Cui, N. Liu, Nat. Mater., 2017, 16, 16 |
3. | M. Z. Jacobson, W. Colella, D. Golden, Sci., 2005, 308, 1901 |
4. | X. Yang, Y. Wang, C. M. Li, D. Wang, Nano. Res., 2021, 14, 3446 |
5. | Y. Yang, Y. Yang, Y. Liu, S. Zhao, Z. Tang, Small Science, 2021, 1, 2100015 |
6. | S. Zhao, C. Tan, C.-T. He, P. An, F. Xie, S. Jiang, Y. Zhu, K.-H. Wu, B. Zhang, H. Li, J. Zhang, Y. Chen, S. Liu, J. Dong, Z. Tang, Nat. Energy., 2020, 5, 881 |
7. | L. Tian, X. Zhai, X. Wang, X. Pang, J. Li, Z. Li, Electrochim. Acta, 2020, 337, 135823 |
8. | N. C. S. Selvam, L. Du, B. Y. Xia, P. J. Yoo, B. You, Adv. Funct. Mater., 2021, 31, 2008190 |
9. | S. Xu, H. Zhao, T. Li, J. Liang, S. Lu, G. Chen, S. Gao, A. M. Asiri, Q. Wu, X. Sun, J. Mater. Chem. A, 2020, 8, 19729 |
10. | X. Zheng, P. Li, S. Dou, W. Sun, H. Pan, D. Wang, Y. Li, Energy Environ. Sci., 2021, 14, 2809 |
11. | T. Wang, L. Tao, X. Zhu, C. Chen, W. Chen, S. Du, Y. Zhou, B. Zhou, D. Wang, C. Xie, P. Long, W. Li, Y. Wang, R. Chen, Y. Zou, X.-Z. Fu, Y. Li, X. Duan, S. Wang, Nat. Catal., 2022, 5, 66 |
12. | Q. Zhang, N. M. Bedford, J. Pan, X. Lu, R. Amal, Adv. Energy. Mater., 2019, 9, 1901312 |
13. | J. P. Hughes, J. Clipsham, H. Chavushoglu, S. J. Rowley-Neale, C. E. Banks, Renewable and Sustainable Energy Reviews, 2021, 139, 110709 |
14. | V. I. Birss, A. Damjanovic, P. Hudson, J. Electrochem. Soc., 1986, 133, 1621 |
15. | B. E. Conway, T. Liu, Langmuir, 1990, 6, 268 |
16. | L. Li, P. Wang, Q. Shao, X. Huang, Adv. Mater., 2021, 33, 2004243 |
17. | F. Lyu, Q. Wang, S. M. Choi, Y. Yin, Small, 2019, 15, 1804201 |
18. | S. Sultan, J. N. Tiwari, A. N. Singh, S. Zhumagali, M. Ha, C. W. Myung, P. Thangavel, K. S. Kim, Adv. Energy. Mater., 2019, 9, 1900624 |
19. | F.-Y. Chen, Z.-Y. Wu, Z. Adler, H. Wang, Joule, 2021, 5, 1704 |
20. | Y. Sun, H. Liao, J. Wang, B. Chen, S. Sun, S. J. H. Ong, S. Xi, C. Diao, Y. Du, J.-O. Wang, M. B. H. Breese, S. Li, H. Zhang, Z. J. Xu, Nat. Catal., 2020, 3, 554 |
21. | Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev., 2015, 44, 2060 |
22. | B. M. Hunter, H. B. Gray, A. M. Muller, Chem. Rev., 2016, 116, 14120 |
23. | J. Song, C. Wei, Z.-F. Huang, C. Liu, L. Zeng, X. Wang, Z. J. Xu, Chem. Soc. Rev., 2020, 49, 2196 |
24. | F. Song, L. Bai, A. Moysiadou, S. Lee, C. Hu, L. Liardet, X. Hu, J. Am. Chem. Soc., 2018, 140, 7748 |
25. | N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H. M. Chen, Chem. Soc. Rev., 2017, 46, 337 |
26. | X. Rong, J. Parolin, A. M. Kolpak, Acs. Catal., 2016, 6, 1153 |
27. | D. A. Kuznetsov, M. A. Naeem, P. V. Kumar, P. M. Abdala, A. Fedorov, C. R. Müller, J. Am. Chem. Soc., 2020, 142, 7883 |
28. | J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, J. K. Nørskov, Nat. Mater., 2017, 16, 70 |
29. | X. Wang, H. Zhong, S. Xi, W. S. V. Lee, J. Xue, Adv. Mater., 2022, 34, 2107956 |
30. | N. Zhang, Y. Chai, Energy Environ. Sci., 2021, 14, 4647 |
31. | Z.-F. Huang, J. Song, Y. Du, S. Xi, S. Dou, J. M. V. Nsanzimana, C. Wang, Z. J. Xu, X. Wang, Nat. Energy., 2019, 4, 329 |
32. | W.-H. Lai, L.-F. Zhang, W.-B. Hua, S. Indris, Z.-C. Yan, Z. Hu, B. Zhang, Y. Liu, L. Wang, M. Liu, R. Liu, Y.-X. Wang, J.-Z. Wang, Z. Hu, H.-K. Liu, S.-L. Chou, S.-X. Dou, Angew. Chem. Int. Ed., 2019, 58, 11868 |
33. | Y.-Q. Zhou, L. Zhang, H.-L. Suo, W. Hua, S. Indris, Y. Lei, W.-H. Lai, Y.-X. Wang, Z. Hu, H.-K. Liu, S.-L. Chou, S.-X. Dou, Adv. Funct. Mater., 2021, 31, 2101797 |
34. | N. Ran, E. Song, Y. Wang, Y. Zhou, J. Liu, Energy Environ. Sci., 2022, 15, 2071 |
35. | N. B. Halck, V. Petrykin, P. Krtil, J. Rossmeisl, PCCP, 2014, 16, 13682 |
36. | H. Fei, J. Dong, Y. Feng, C. S. Allen, C. Wan, B. Volosskiy, M. Li, Z. Zhao, Y. Wang, H. Sun, P. An, W. Chen, Z. Guo, C. Lee, D. Chen, I. Shakir, M. Liu, T. Hu, Y. Li, A. I. Kirkland, X. Duan, Y. Huang, Nat. Catal., 2018, 1, 63 |
37. | A. D. Doyle, J. H. Montoya, A. Vojvodic, ChemCatChem, 2015, 7, 738 |
38. | Z. Kou, X. Li, L. Zhang, W. Zang, X. Gao, J. Wang, Small Science, 2021, 1, 2100011 |
39. | J. Shan, Y. Zheng, B. Shi, K. Davey, S.-Z. Qiao, ACS. Energy. Lett., 2019, 4, 2719 |
40. | E. Fabbri, M. Nachtegaal, T. Binninger, X. Cheng, B.-J. Kim, J. Durst, F. Bozza, T. Graule, R. Schäublin, L. Wiles, M. Pertoso, N. Danilovic, K. E. Ayers, T. J. Schmidt, Nat. Mater., 2017, 16, 925 |
41. | D. Friebel, M. W. Louie, M. Bajdich, K. E. Sanwald, Y. Cai, A. M. Wise, M.-J. Cheng, D. Sokaras, T.-C. Weng, R. Alonso-Mori, R. C. Davis, J. R. Bargar, J. K. Nørskov, A. Nilsson, A. T. Bell, J. Am. Chem. Soc., 2015, 137, 1305 |
42. | Q. Yin, J. M. Tan, C. Besson, Y. V. Geletii, D. G. Musaev, A. E. Kuznetsov, Z. Luo, K. I. Hardcastle, C. L. Hill, Sci., 2010, 328, 342 |
43. | F. M. Toma, A. Sartorel, M. Iurlo, M. Carraro, P. Parisse, C. Maccato, S. Rapino, B. R. Gonzalez, H. Amenitsch, T. Da Ros, L. Casalis, A. Goldoni, M. Marcaccio, G. Scorrano, G. Scoles, F. Paolucci, M. Prato, M. Bonchio, Nat. Chem., 2010, 2, 826 |
44. | B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. García-Melchor, L. Han, J. Xu, M. Liu, L. Zheng, F. P. García de Arquer, C. T. Dinh, F. Fan, M. Yuan, E. Yassitepe, N. Chen, T. Regier, P. Liu, Y. Li, P. De Luna, A. Janmohamed, H. L. Xin, H. Yang, A. Vojvodic, E. H. Sargent, Sci., 2016, 352, 333 |
45. | C. Wang, L. Jin, H. Shang, H. Xu, Y. Shiraishi, Y. Du, Chin. Chem. Lett., 2021, 32, 2108 |
46. | A. Zagalskaya, V. Alexandrov, Acs. Catal., 2020, 10, 3650 |
47. | X. Wang, C. Xing, Z. Liang, P. Guardia, X. Han, Y. Zuo, J. Llorca, J. Arbiol, J. Li, A. Cabot, J. Mater. Chem. A., 2022, 10, 3659 |
48. | L. An, C. Wei, M. Lu, H. Liu, Y. Chen, G. G. Scherer, A. C. Fisher, P. Xi, Z. J. Xu, C.-H. Yan, Adv. Mater., 2021, 33, 2006328 |
49. | L. Zhang, H. Jang, H. Liu, M. G. Kim, D. Yang, S. Liu, X. Liu, J. Cho, Angew. Chem. Int. Ed., 2021, 60, 18821 |
50. | K. Zhu, F. Shi, X. Zhu, W. Yang, Nano Energy, 2020, 73, 104761 |
51. | J. Hwang, Z. Feng, N. Charles, X. R. Wang, D. Lee, K. A. Stoerzinger, S. Muy, R. R. Rao, D. Lee, R. Jacobs, D. Morgan, Y. Shao-Horn, Mater. Today, 2019, 31, 100 |
52. | A. Grimaud, O. Diaz-Morales, B. Han, W. T. Hong, Y.-L. Lee, L. Giordano, K. A. Stoerzinger, M. T. M. Koper, Y. Shao-Horn, Nat. Chem., 2017, 9, 457 |
53. | P. Wang, Q. Cheng, C. Mao, W. Su, L. Yang, G. Wang, L. Zou, Y. Shi, C. Yan, Z. Zou, H. Yang, J. Power Sources, 2021, 502, 229903 |
54. | W. T. Hong, K. A. Stoerzinger, Y.-L. Lee, L. Giordano, A. Grimaud, A. M. Johnson, J. Hwang, E. J. Crumlin, W. Yang, Y. Shao-Horn, Energy Environ. Sci., 2017, 10, 2190 |
55. | Z.-F. Huang, S. Xi, J. Song, S. Dou, X. Li, Y. Du, C. Diao, Z. J. Xu, X. Wang, Nat. Commun., 2021, 12, 3992 |
56. | H. Liu, X. Li, C. Peng, L. Zhu, Y. Zhang, H. Cheng, J. Cui, Q. Wu, Y. Zhang, Z. Chen, W. Zou, W. Gu, H. Huang, J. Wang, B. Ye, Z. Fu, Y. Lu, J. Mater. Chem. A., 2020, 8, 13150 |
57. | T. Binninger, R. Mohamed, K. Waltar, E. Fabbri, P. Levecque, R. Kötz, T. J. Schmidt, Scientific Reports, 2015, 5, 12167 |
58. | P. Thangavel, M. Ha, S. Kumaraguru, A. Meena, A. N. Singh, A. M. Harzandi, K. S. Kim, Energy Environ. Sci., 2020, 13, 3447 |
59. | W. E. Mustain, P. A. Kohl, Nat. Energy., 2020, 5, 359 |
60. | D. Li, E. J. Park, W. Zhu, Q. Shi, Y. Zhou, H. Tian, Y. Lin, A. Serov, B. Zulevi, E. D. Baca, C. Fujimoto, H. T. Chung, Y. S. Kim, Nat. Energy., 2020, 5, 378 |
61. | J. Gao, C.-Q. Xu, S.-F. Hung, W. Liu, W. Cai, Z. Zeng, C. Jia, H. M. Chen, H. Xiao, J. Li, Y. Huang, B. Liu, J. Am. Chem. Soc., 2019, 141, 3014 |
62. | K. Zhu, X. Zhu, W. Yang, Angew. Chem. Int. Ed., 2019, 58, 1252 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
a Schematic diagram of the AEM. b Schematic diagram of the LOM.[19] Copyright 2021, Elsevier. c The scaling relationships between the reaction mechanism diagrams of AEM and LOM with energy bands. The formation of a density of states (DOS) diagram for spinel oxide with the contributions from tetragonal cations (MT), octahedral cations (MO) and oxygen anions (O).[20] Copyright 2020, Springer Nature.
a OER pathway for intermediates. b The overpotential of the Gibbs free energy function of OER intermediates.[41] Copyright 2015, American Chemical Society. c Variation of OH adsorption energy of WO3, CoOOH, FeOOH and CoWO4. d Density functional theory calculations for OER activity of pure Fe, Co hydroxyl oxides and W, Fe-doped Co hydroxyl oxides.[44] Copyright 2016, American Association for the Advancement of Science.
a Schematic diagram of the three possible active sites for Ni-doped Ru.[35] Copyright 2014, Royal Society of Chemistry. b Schematic diagram of M-NHGFs. c Optimal geometry of the single-site and double-site mechanisms of OER.[36] Copyright 2018, Macmillan Publishers Limited. d Atomistic side view of the model system used to simulate confinement. e Adsorption energy of OER intermediates as a function of surface channel width.[37] Copyright 2014, Wiley-VCH.
a Schematic representation of the AEM and LOM. b Top view of (110) and (211) surfaces of rutile-structured RuO2 and IrO2 employed in DFT calculations of the OER overpotentials.[46] Copyright 2020, American Chemical Society. c Schematic rigid band diagrams of Y2Ru2O7-δ-xFx.[53] Copyright 2021, Elsevier. d Ultraviolet-photoelectron spectra of oxygen-vacancy-rich (Vo-rich) and oxygen-vacancy-poor (Vo-poor) BCO. e Schematic diagram of the energy bands of Vo-rich and Vo-poor BCO. f Schematic diagram of the LOM of BCO.[56] Copyright 2020, The Royal Society of Chemistry.
Challenges and opportunities for OER electrocatalysts following the AEM and LOM mechanisms.