Citation: | Tongwei Wu, Pai Wang, Yanning Zhang. Microenvironment Optimization towards Electrocatalytic Ammonia Synthesis: Recent Progress and Future. Materials Lab 2022, 1, 220011. doi: 10.54227/mlab.20220011 |
The electrocatalytic nitrogen reduction reaction (N2RR) in aqueous media has garnered substantial interest as it allows direct conversion of N2 to NH3 under benign reaction conditions. However, the competing hydrogen evolution reaction (HER), strong N≡N bond, sluggish kinetics, and low solubility of N2 in pure water seriously limit the overall N2RR efficiency and economically viable N2RR. In this review, the emerging advances in strategies are presented towards improving electrochemical N2RR, involving three-phase interface construction, electrolyte controlling, cell configuration, and advanced electrochemical simulation choice. Finally, the current challenges and future perspectives for N2RR are highlighted.
1. | V. Smil, Nature, 1999, 400, 415 |
2. | R. Schlögl, Angew. Chem. Int. Ed., 2003, 42, 2004 |
3. | G. Qing, R. Ghazfar, S. T. Jackowski, F. Habibzadeh, M. M. Ashtiani, C.-P. Chen, M. R. Smith, T. W. Hamann, Chem. Rev., 2020, 120, 5437 |
4. | A. Hellman, K. Honkala, S. Dahl, Ammonia Synthesis: State of the Bellwether Reaction in Comprehensive Inorganic Chemistry II (Second Edition): From Elements to Applications, Elsevier, Netherlands, 2013. |
5. | T. Wu, H. Zhao, X. Zhu, Z. Xing, Q. Liu, T. Liu, S. Gao, S. Lu, G. Chen, A. M. Asiri, Y. Zhang, X. Sun, Adv. Mater., 2020, 32, 2000299 |
6. | X. Y. Cui, C. Tang, Q. Zhang, Adv. Energy Mater., 2018, 8, 1800369 |
7. | C. Smith, A. K. Hill, L. Torrente-Murciano, Energ. Environ. Sci., 2020, 13, 331 |
8. | J. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L. Bren, R. M. Bullock, M. Y. Darensbourg, P. L. Holland, B. Hoffman, M. J. Janik, A. K. Jones, M. G. Kanatzidis, P. King, K. M. Lancaster, S. V. Lymar, P. Pfromm, W. F. Schneider, R. R. Schrock, Science, 2018, 360, eaar6611 |
9. | R. Shi, X. Zhang, G. I. Waterhouse, Y. Zhao, T. Zhang, Adv. Energy Mater., 2020, 10, 2000659 |
10. | T. Wu, W. Kong, Y. Zhang, Z. Xing, J. Zhao, T. Wang, X. Shi, Y. Luo, X. Sun, Small methods, 2019, 3, 1900356 |
11. | X. Bian, S. Zhang, Y. Zhao, R. Shi, T. Zhang, InfoMat, 2021, 3, 719 |
12. | X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu, S. Peng, J. Ma, G. Zheng, Joule, 2018, 2, 1610 |
13. | W. Wang, H. Zhang, S. Zhang, Y. Liu, G. Wang, C. Sun, H. Zhao, Angew. Chem. , Int. Ed., 2019, 58, 16644 |
14. | C. Tang, S. Z. Qiao, Chem. Soc. Rev., 2019, 48, 3166 |
15. | C. Ling, Y. Ouyang, Q. Li, X. Bai, X. Mao, A. Du, J. Wang, Small Methods, 2019, 3, 1800376 |
16. | X. Zhu, S. Mou, Q. Peng, Q. Liu, Y. Luo, G. Chen, S. Gao, X. Sun, J. Mater. Chem. A, 2020, 8, 1545 |
17. | C. Ling, Y. Zhang, Q. Li, X. Bai 1, L. Shi, J. Wang, J. Am. Chem. Soc., 2019, 141, 18264 |
18. | T. Wu, X. Zhu, Z. Xing, S. Mou, C. Li, Y. Qiao, Q. Liu, Y. Luo, X. Shi, Y. Zhang, X. Sun, Angew. Chem. , Int. Ed., 2019, 58, 18449 |
19. | Y. Ren, C. Yu, X. Tan, H. Huang, Q. Wei, J. Qiu, Energ. Environ. Sci., 2021, 14, 1176 |
20. | T. He, S. K. Matta, A. Du, Phys. Chem. Chem. Phys., 2019, 21, 1546 |
21. | C. J. van der Ham, T. M. Koper, G. H. Hetterscheid, Chem. Soc. Rev., 2014, 43, 5183 |
22. | W. Kang, C. C. Lee, A. J. Jasniewski, M. W. Ribbe, Y. Hu, Science, 2020, 368, 1381 |
23. | F. Chang, W. Gao, J. Guo, P. Chen, Adv. Mater., 2021, 33, 2005721 |
24. | W. Guo, K. Zhang, Z. Liang, R. Zou, Q. Xu, Chem. Soc. Rev., 2019, 48, 5658 |
25. | X. Mao, Z. Gu, C. Yan, A. Du, J. Mater. Chem. A, 2021, 9, 6575 |
26. | G. Kour, X. Mao, A. Du, J. Mater. Chem. A, 2022, 10, 6204 |
27. | Y.-C. Hao, Y. Guo, L.-W. Chen, M. Shu, X.-Y. Wang, T.-A. Bu, W.-Y. Gao, N. Zhang, X. Su, X. Feng, J.-W. Zhou, B. Wang, C.-W. Hu, A.-X. Yin, R. Si, Y.-W. Zhang, C.-H. Yan, Nat. Catal., 2019, 2, 448 |
28. | X. Zhao, G. Hu, G.-F. Chen, H. Zhang, S. Zhang, H. Wang, Adv. Mater., 2021, 33, 2007650 |
29. | C. Choi, G. H. Gu, J. Noh, H. S. Park, Y. Jung, Nat. Commun., 2021, 12, 4353 |
30. | T. He, A. R. P. Santiago, A. Du, J. Catal., 2020, 388, 77 |
31. | C. Liu, Q. Li, C. Wu, J. Zhang, Y. Jin, D. R. MacFarlane, C. Sun, J. Am. Chem. Soc., 2019, 141, 2884 |
32. | Q. Li, Y. Zhang, L. Shi, M. Wu, Y. Ouyang, J. Wang, , 2021, 3, 1285 |
33. | X. Liu, Y. Jiao, Y. Zheng, K. Davey, S.-Z. Qiao, J. Mater. Chem. A, 2019, 7, 3648 |
34. | K. Wang, Y. Guo, Z. Chen, D. Wu, S. Zhang, B. Yang, J. Zhang, InfoMat, 2022, 4, e12251 |
35. | S. F. Ng, J. J. Foo, W. J. Ong, InfoMat, 2022, 4, e12279 |
36. | X. Liao, R. Lu, L. Xia, Q. Liu, H. Wang, K. Zhao, Z. Wang, Y. Zhao, Energ. Environ. Mater., 2022, 5, 157 |
37. | X. Guo, J. Gu, S. Lin, S. Zhang, Z. Chen, S. Huang, J. Am. Chem. Soc., 2020, 142, 5709 |
38. | M. M. Melander, Curr. Opin. Electroche., 2021, 29, 100749 |
39. | L. Shi, Y. Yin, S. Wang, H. Sun, ACS Catal., 2020, 10, 6870 |
40. | P Garrido-Barros, J. Derosa, M. J Chalkley, et al, Nature, 2022, 609, 71 |
41. | C.Du, C. Qiu, Z. Fang, et al, Nano Energy, 2022, 92, 106784 |
42. | Q. Wang, J. Guo, P. Chen, J. Energy Chem., 2019, 36, 25 |
43. | J. Zhang, B. Zhao, W. Liang, G. Zhou, Z, Liang, Y. Wang, J. Qu, Y. Sun, L. Jiang, Adv. Sci., 2020, 7, 2002630 |
44. | Y. Liu, B. Huang, X. Chen, Z. Tian, X. Zhang, P. Tsiakaras, P. K. Shen, Appl. Catal. B-Environ., 2020, 271, 118919 |
45. | Y. Yang, S. Q. Wang, H. Wen, T. Ye, J. Chen, C.-P. Li, M. Du, Angew. Chem. , Int. Ed., 2019, 58, 15362 |
46. | L. Niu, Z. Liu, G. Liu, M. Li, X. Zong, D. Wang, L. An, D. Qu, X. Sun, X. Wang, Z. Sun, Nano Res., 2022, 15, 3886 |
47. | T. Xu, J. Liang, Y. Wang, S. Li, Z. Du, T. Li, Q. Liu, Y. Luo, F. Zhang, X. Shi, B. Tang, Q. Kong, A. M. Asiri, C. Yang, D. Ma, X. Sun, Nano Res., 2022, 15, 1039 |
48. | F. Lai, W. Zong, G. He, Y. Xu, H. Huang, B. Weng, D. Rao, J. A. Martens, J. Hofkens, I. P. Parkin, T. Liu, Angew. Chem. , Int. Ed., 2020, 59, 13320 |
49. | Y. Song, D. Johnson, R. Peng, D. K. Hensley, P. V. Bonnesen, L. Liang, J. Huang, F. Yang, F. Zhang, R. Qiao, A. P. Baddorf, T. J. Tschaplinski, N. L. Engle, M. C. Hatzell, Z. Wu, D. A. Cullen, H. M. Meyer, B. G. Sumpter, A. J. Rondinone, Sci. Adv., 2018, 4., e1700336 |
50. | Y. Ren, C. Yu, X. Han, X. Tan, Q. Wei, W. Li, Y. Han, L. Yang, J. Qiu, ACS Energy Lett., 2021, 6, 3844 |
51. | Y. Guo, J. Gu, R. Zhang, S. Zhang, Z. Li, Y. Zhao, Z. Huang, J. Fan, Z. Chen, C. Zhi, Adv. Energy Mater., 2021, 11, 2101699 |
52. | F. Zhou, L. M. Azofra, M. Ali, M. Kar, A. N. Simonov, C. McDonnell-Worth, C. Sun, X. Zhang, D. R. MacFarlane, Energ. Environ. Sci., 2017, 10, 2516 |
53. | S. Liu, T. Qian, M. Wang, H. Ji, X. Shen, C. Wang, C. Yan, Nature Catal., 2021, 4, 322 |
54. | M. Wang, S. Liu, H. Ji. T. Yang, T. Qian, C. Yan, Nat. Commun., 2021, 12, 3198 |
55. | C. Lv, J. Liu, C. Lee, et al, ACS nano, 2022, 16, 15512 |
56. | Q. Zhang, B. Liu, L. Yu, Y. Bei, B. Tang, ChemCatChem, 2020, 12, 334 |
57. | Q. Liu, T. Xu, Y. Luo, Q. Kong, T. Li, S. Lu, A. A. Alshehri, K. A. Alzahrani, X. Sun, Curr. Opin. Electroche., 2021, 29, 100766 |
58. | Y. Wan, J. Xu, R. Lv, Mater. Today, 2019, 27, 69 |
59. | G. F. Chen, S. Ren, L. Zhang, H. Cheng, Y. Luo, K. Zhu, L.-X. Ding, H. Wang, Small Methods, 2019, 3, 1800337 |
60. | J. Hou, M. Yang, J. Zhang, Nanoscale, 2020, 12, 6900 |
61. | L. Li, C. Tang, D. Yao, Y. Zheng, S.-Z. Qiao, ACS Energy Lett., 2019, 4, 2111 |
62. | H. Liu, Y. Zhang, J. Luo, J. Energy Chem., 2020, 49, 51 |
63. | J. Choi, B. H. Suryanto, D. Wang, H.-L. Du, R. Y. Hodgetts, F. M. F. Vallana, D. R. MacFarlane, A. N. Simonov, Nat. Commun., 2020, 11, 5546 |
64. | D. M. Weekes, D. A. Salvatore, A. Reyes, A. Huang, C. P. Berlinguette, Acc. Chem. Res., 2018, 51, 910 |
65. | D. Ma, T. Jin, K. Xie, H. Huang, J. Mater. Chem. A, 2021, 9, 20897 |
66. | Y. Zhao, F. Li, W. Li, Y. Li, C. Liu, Z. Zhao, Y. Shan, Y. Ji, L. Sun, Angew. Chem. , Int. Ed., 2021, 60, 20331 |
67. | J. Li, S. Chen, F. Quan, G. Zhan, F. Jia, Z. Ai, L. Zhang, Chem, 2020, 6, 885 |
68. | Z. Pan, F. Khalid, A. Tahir, O. C. Esan, J. Zhu, R. Chen, L. An, Fundamental Res., 2021, |
69. | X. W. Lv, C. C. Weng, Z. Y. Yuan, Chem Sus Chem, 2020, 13, 3061 |
70. | J. N. Renner, L. F. Greenlee, K. E. Ayres, A. M. Herring, Electrochem. Soc. Interface, 2015, 24, 51 |
71. | J. Kong, A. Lim, C. Yoon, J. H. Jang, H. C. Ham, J. Han, S. Nam, D. Kim, Y.-E. Sung, J. Choi, H. S. Park, ACS Sustain. Chem. Eng., 2017, 5, 10986 |
72. | E. Skulason, T. Bligaard, S. Gudmundsdóttir, F. Studt, J. Rossmeisl, F. Abild-Pedersen, T. Vegge, H. Jónsson, J. K. Nørskov, Phys. Chem. Chem. Phys., 2012, 14, 1235 |
73. | J. E. Sutton, D. G. Vlachos, ACS Catal., 2012, 2, 1624 |
74. | J. H. Montoya, C. Tsai, A. Vojvodic, J. K. Nørskov, ChemSusChem, 2015, 8, 2180 |
75. | T. Wu, C. Ma, P. Wang, H. Zhao, Y. Zhang, J. Phys-Condens. Mat., 2021, 34, 044004 |
76. | J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, C. M. Lok, J. Phy. Chem. C, 2008, 112, 1308 |
77. | M. M. Melander, M. J. Kuisma, T. E. K. Christensen, K. Honkala, J. Chem. Phys., 2019, 150, 041706 |
78. | T. Wu, M. Melander, K. Honkala, ACS Catal., 2022, 12, 25 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The various strategies for constructing three-phase interface on catalyst surface. (a) LSV curves of Au/o-CFP and Au/i-CFP under Ar-saturation electrolyte and their NH3 yields under N2-saturation electrolyte (upper panel), and the schematic illumination of three-phase contact at gas-liquid-solid interface (lower panel).[43] Copyright 2020, Wiley-VCH. (b) The schematic illumination of the biomimetic electrode-electrolyte design and corresponding N2RR performance.[44] Copyright 2020, Elsevier. (c) The schematic illumination of the improving strategy of nitrogen reduction and corresponding N2RR performance over the hydrophobicity NPG@ZIF-8 electrocatalyst.[45] Copyright 2019, Wiley-VCH.
The approaches for suppressing the HER. (a) The effect of different counterion of Li+, Na+, and K+ in electrolyte on NH3 yield (upper panel) and FE (lowper panel).[49] Copyright 2018, Science. (b) The comparison illumination of N2RR and HER processes at the gas-liquid-solid interfaces in aqueous and methanol-water electrolytes, respectively, and (c) corresponding comparison of FEs for N2RR on FeOOH/CNTs catalyst in both electrolytes.[50] Copyright 2021, American Chemical Society. (d) Mechanism strategy for tuning the electrochemical nitrogen reduction via using proton-filtering COFs with superior nitrogen penetration flux, and (e) corresponding comparison of NH3 yield rates.[53] Copyright 2021, Nature.
The various electrochemical cell configurations. (a) The single-chamber cells and (b) the H-type cells. (c) The simple flow cells. (d) The simple back-to-back cells.[3] Copyright 2020, American Chemical Society. (e) Illustration of setup in flow cell including of working principle, short-term operation and long-term operation.[68] Copyright 2021, Elsevier.
The contributions of theoretical chemistry in the field of catalysis. (a) The volcano diagram for N2RR on various metal surfaces.[72] Copyright 2012, Royal Society of Chemistry. (b) The BEP relation diagram.[73] Copyright 2012, American Chemical Society. (c) Schematic description of a GCE-DFT simulation at constant potential, and GCE minimum energy pathways for Volmer reaction in the acidic condition on gold surface at various electrode potentials.[77] Copyright 2019, American Institute of Physics.