Tongwei Wu, Pai Wang, Yanning Zhang. Microenvironment Optimization towards Electrocatalytic Ammonia Synthesis: Recent Progress and Future. Materials Lab 2022, 1, 220011. doi: 10.54227/mlab.20220011
Citation: Tongwei Wu, Pai Wang, Yanning Zhang. Microenvironment Optimization towards Electrocatalytic Ammonia Synthesis: Recent Progress and Future. Materials Lab 2022, 1, 220011. doi: 10.54227/mlab.20220011

Review Article

Microenvironment Optimization towards Electrocatalytic Ammonia Synthesis: Recent Progress and Future

More Information
  • Corresponding author: yanningz@uestc.edu.cn
  • The electrocatalytic nitrogen reduction reaction (N2RR) in aqueous media has garnered substantial interest as it allows direct conversion of N2 to NH3 under benign reaction conditions. However, the competing hydrogen evolution reaction (HER), strong N≡N bond, sluggish kinetics, and low solubility of N2 in pure water seriously limit the overall N2RR efficiency and economically viable N2RR. In this review, the emerging advances in strategies are presented towards improving electrochemical N2RR, involving three-phase interface construction, electrolyte controlling, cell configuration, and advanced electrochemical simulation choice. Finally, the current challenges and future perspectives for N2RR are highlighted.


  • 加载中
  • Tongwei Wu received his Ph.D. degree from the University of Electronic Science and Technology of China in 2021. He is currently a postdoc at the State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China. His research interests include the synthesis of novel nanomaterials, first-principles calculations, and their application in electrocatalysis.
    Pai Wang is a Ph.D. candidate at the Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China. Her current research focuses on the design of transition-metal based electrocatalysts for water splitting through first-principles calculations.
    Yanning Zhang received her Ph.D. in Materials Engineering from Shandong University in China in 2008 and later joined University of California, Irvine in USA as a postdoctoral researcher. She joined University of Electronic Science and Technology of China as a Professor in 2016. Dr. Zhang performs theoretical studies and predictions on the structural and physical properties of many functional materials, such as energy conversion and storage materials and magnetic thin films, mainly through first-principles method. With close collaborations with experimental groups, her current focus is the chemical composition and morphology modulations of transition metal sulfides towards their electrochemical performance.
  • 1. V. Smil, Nature, 1999, 400, 415
    2. R. Schlögl, Angew. Chem. Int. Ed., 2003, 42, 2004
    3. G. Qing, R. Ghazfar, S. T. Jackowski, F. Habibzadeh, M. M. Ashtiani, C.-P. Chen, M. R. Smith, T. W. Hamann, Chem. Rev., 2020, 120, 5437
    4. A. Hellman, K. Honkala, S. Dahl, Ammonia Synthesis: State of the Bellwether Reaction in Comprehensive Inorganic Chemistry II (Second Edition): From Elements to Applications, Elsevier, Netherlands, 2013.
    5. T. Wu, H. Zhao, X. Zhu, Z. Xing, Q. Liu, T. Liu, S. Gao, S. Lu, G. Chen, A. M. Asiri, Y. Zhang, X. Sun, Adv. Mater., 2020, 32, 2000299
    6. X. Y. Cui, C. Tang, Q. Zhang, Adv. Energy Mater., 2018, 8, 1800369
    7. C. Smith, A. K. Hill, L. Torrente-Murciano, Energ. Environ. Sci., 2020, 13, 331
    8. J. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L.  Bren, R. M.  Bullock, M. Y.  Darensbourg, P. L.  Holland, B.  Hoffman, M. J.  Janik, A. K.  Jones, M. G.  Kanatzidis, P.  King, K. M.  Lancaster, S. V.  Lymar, P.  Pfromm, W. F.  Schneider, R. R.  Schrock, Science, 2018, 360, eaar6611
    9. R. Shi, X. Zhang, G. I. Waterhouse, Y. Zhao, T. Zhang, Adv. Energy Mater., 2020, 10, 2000659
    10. T. Wu, W. Kong, Y. Zhang, Z. Xing, J. Zhao, T. Wang, X. Shi, Y. Luo, X. Sun, Small methods, 2019, 3, 1900356
    11. X. Bian, S. Zhang, Y. Zhao, R. Shi, T. Zhang, InfoMat, 2021, 3, 719
    12. X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu, S. Peng, J. Ma, G. Zheng, Joule, 2018, 2, 1610
    13. W. Wang, H. Zhang, S. Zhang, Y. Liu, G. Wang, C. Sun, H. Zhao, Angew. Chem. , Int. Ed., 2019, 58, 16644
    14. C. Tang, S. Z. Qiao, Chem. Soc. Rev., 2019, 48, 3166
    15. C. Ling, Y. Ouyang, Q. Li, X. Bai, X. Mao, A. Du, J. Wang, Small Methods, 2019, 3, 1800376
    16. X. Zhu, S. Mou, Q. Peng, Q. Liu, Y. Luo, G. Chen, S. Gao, X. Sun, J. Mater. Chem. A, 2020, 8, 1545
    17. C. Ling, Y. Zhang, Q. Li, X. Bai 1, L. Shi, J. Wang, J. Am. Chem. Soc., 2019, 141, 18264
    18. T. Wu, X. Zhu, Z. Xing, S. Mou, C. Li, Y. Qiao, Q. Liu, Y. Luo, X. Shi, Y. Zhang, X. Sun, Angew. Chem. , Int. Ed., 2019, 58, 18449
    19. Y. Ren, C. Yu, X. Tan, H. Huang, Q. Wei, J. Qiu, Energ. Environ. Sci., 2021, 14, 1176
    20. T. He, S. K. Matta, A. Du, Phys. Chem. Chem. Phys., 2019, 21, 1546
    21. C. J. van der Ham, T. M. Koper, G. H. Hetterscheid, Chem. Soc. Rev., 2014, 43, 5183
    22. W. Kang, C. C. Lee, A. J. Jasniewski, M. W. Ribbe, Y. Hu, Science, 2020, 368, 1381
    23. F. Chang, W. Gao, J. Guo, P. Chen, Adv. Mater., 2021, 33, 2005721
    24. W. Guo, K. Zhang, Z. Liang, R. Zou, Q. Xu, Chem. Soc. Rev., 2019, 48, 5658
    25. X. Mao, Z. Gu, C. Yan, A. Du, J. Mater. Chem. A, 2021, 9, 6575
    26. G. Kour, X. Mao, A. Du, J. Mater. Chem. A, 2022, 10, 6204
    27. Y.-C. Hao, Y. Guo, L.-W. Chen, M. Shu, X.-Y. Wang, T.-A. Bu, W.-Y. Gao, N. Zhang, X. Su, X. Feng, J.-W. Zhou, B. Wang, C.-W. Hu, A.-X. Yin, R. Si, Y.-W. Zhang, C.-H. Yan, Nat. Catal., 2019, 2, 448
    28. X. Zhao, G. Hu, G.-F. Chen, H. Zhang, S. Zhang, H. Wang, Adv. Mater., 2021, 33, 2007650
    29. C. Choi, G. H. Gu, J. Noh, H. S. Park, Y. Jung, Nat. Commun., 2021, 12, 4353
    30. T. He, A. R. P. Santiago, A. Du, J. Catal., 2020, 388, 77
    31. C. Liu, Q. Li, C. Wu, J. Zhang, Y. Jin, D. R. MacFarlane, C. Sun, J. Am. Chem. Soc., 2019, 141, 2884
    32. Q. Li, Y. Zhang, L. Shi, M. Wu, Y. Ouyang, J. Wang, , 2021, 3, 1285
    33. X. Liu, Y. Jiao, Y. Zheng, K. Davey, S.-Z. Qiao, J. Mater. Chem. A, 2019, 7, 3648
    34. K. Wang, Y. Guo, Z. Chen, D. Wu, S. Zhang, B. Yang, J. Zhang, InfoMat, 2022, 4, e12251
    35. S. F. Ng, J. J. Foo, W. J. Ong, InfoMat, 2022, 4, e12279
    36. X. Liao, R. Lu, L. Xia, Q. Liu, H. Wang, K. Zhao, Z. Wang, Y. Zhao, Energ. Environ. Mater., 2022, 5, 157
    37. X. Guo, J. Gu, S. Lin, S. Zhang, Z. Chen, S. Huang, J. Am. Chem. Soc., 2020, 142, 5709
    38. M. M. Melander, Curr. Opin. Electroche., 2021, 29, 100749
    39. L. Shi, Y. Yin, S. Wang, H. Sun, ACS Catal., 2020, 10, 6870
    40. P Garrido-Barros, J. Derosa, M. J Chalkley, et al, Nature, 2022, 609, 71
    41. C.Du, C. Qiu, Z. Fang, et al, Nano Energy, 2022, 92, 106784
    42. Q. Wang, J. Guo, P. Chen, J. Energy Chem., 2019, 36, 25
    43. J. Zhang, B. Zhao, W. Liang, G. Zhou, Z, Liang, Y. Wang, J. Qu, Y. Sun, L. Jiang, Adv. Sci., 2020, 7, 2002630
    44. Y. Liu, B. Huang, X. Chen, Z. Tian, X. Zhang, P. Tsiakaras, P. K. Shen, Appl. Catal. B-Environ., 2020, 271, 118919
    45. Y. Yang, S. Q. Wang, H. Wen, T. Ye, J. Chen, C.-P. Li, M. Du, Angew. Chem. , Int. Ed., 2019, 58, 15362
    46. L. Niu, Z. Liu, G. Liu, M. Li, X. Zong, D. Wang, L. An, D. Qu, X. Sun, X. Wang, Z. Sun, Nano Res., 2022, 15, 3886
    47. T. Xu, J. Liang, Y. Wang, S. Li, Z. Du, T. Li, Q. Liu, Y. Luo, F. Zhang, X. Shi, B. Tang, Q. Kong, A. M. Asiri, C. Yang, D. Ma, X. Sun, Nano Res., 2022, 15, 1039
    48. F. Lai, W. Zong, G. He, Y. Xu, H. Huang, B. Weng, D. Rao, J. A. Martens, J. Hofkens, I. P. Parkin, T. Liu, Angew. Chem. , Int. Ed., 2020, 59, 13320
    49. Y. Song, D. Johnson, R. Peng, D. K. Hensley, P. V. Bonnesen, L. Liang, J. Huang, F. Yang, F. Zhang, R. Qiao, A. P. Baddorf, T. J. Tschaplinski, N. L. Engle, M. C. Hatzell, Z. Wu, D. A. Cullen, H. M. Meyer, B. G. Sumpter, A. J. Rondinone, Sci. Adv., 2018, 4., e1700336
    50. Y. Ren, C. Yu, X. Han, X. Tan, Q. Wei, W. Li, Y. Han, L. Yang, J. Qiu, ACS Energy Lett., 2021, 6, 3844
    51. Y. Guo, J. Gu, R. Zhang, S. Zhang, Z. Li, Y. Zhao, Z. Huang, J. Fan, Z. Chen, C. Zhi, Adv. Energy Mater., 2021, 11, 2101699
    52. F. Zhou, L. M. Azofra, M. Ali, M. Kar, A. N. Simonov, C. McDonnell-Worth, C. Sun, X. Zhang, D. R. MacFarlane, Energ. Environ. Sci., 2017, 10, 2516
    53. S. Liu, T. Qian, M. Wang, H. Ji, X. Shen, C. Wang, C. Yan, Nature Catal., 2021, 4, 322
    54. M. Wang, S. Liu, H. Ji. T. Yang, T. Qian, C. Yan, Nat. Commun., 2021, 12, 3198
    55. C. Lv, J. Liu, C. Lee, et al, ACS nano, 2022, 16, 15512
    56. Q. Zhang, B. Liu, L. Yu, Y. Bei, B. Tang, ChemCatChem, 2020, 12, 334
    57. Q. Liu, T. Xu, Y. Luo, Q. Kong, T. Li, S. Lu, A. A. Alshehri, K. A. Alzahrani, X. Sun, Curr. Opin. Electroche., 2021, 29, 100766
    58. Y. Wan, J. Xu, R. Lv, Mater. Today, 2019, 27, 69
    59. G. F. Chen, S. Ren, L. Zhang, H. Cheng, Y. Luo, K. Zhu, L.-X. Ding, H. Wang, Small Methods, 2019, 3, 1800337
    60. J. Hou, M. Yang, J. Zhang, Nanoscale, 2020, 12, 6900
    61. L. Li, C. Tang, D. Yao, Y. Zheng, S.-Z. Qiao, ACS Energy Lett., 2019, 4, 2111
    62. H. Liu, Y. Zhang, J. Luo, J. Energy Chem., 2020, 49, 51
    63. J. Choi, B. H. Suryanto, D. Wang, H.-L. Du, R. Y. Hodgetts, F. M. F. Vallana, D. R. MacFarlane, A. N. Simonov, Nat. Commun., 2020, 11, 5546
    64. D. M. Weekes, D. A. Salvatore, A. Reyes, A. Huang, C. P. Berlinguette, Acc. Chem. Res., 2018, 51, 910
    65. D. Ma, T. Jin, K. Xie, H. Huang, J. Mater. Chem. A, 2021, 9, 20897
    66. Y. Zhao, F. Li, W. Li, Y. Li, C. Liu, Z. Zhao, Y. Shan, Y. Ji, L. Sun, Angew. Chem. , Int. Ed., 2021, 60, 20331
    67. J. Li, S. Chen, F. Quan, G. Zhan, F. Jia, Z. Ai, L. Zhang, Chem, 2020, 6, 885
    68. Z. Pan, F. Khalid, A. Tahir, O. C. Esan, J. Zhu, R. Chen, L. An, Fundamental Res., 2021,
    69. X. W. Lv, C. C. Weng, Z. Y. Yuan, Chem Sus Chem, 2020, 13, 3061
    70. J. N. Renner, L. F. Greenlee, K. E. Ayres, A. M. Herring, Electrochem. Soc. Interface, 2015, 24, 51
    71. J. Kong, A. Lim, C. Yoon, J. H. Jang, H. C. Ham, J. Han, S. Nam, D. Kim, Y.-E. Sung, J. Choi, H. S. Park, ACS Sustain. Chem. Eng., 2017, 5, 10986
    72. E. Skulason, T. Bligaard, S. Gudmundsdóttir, F. Studt, J. Rossmeisl, F. Abild-Pedersen, T. Vegge, H. Jónsson, J. K. Nørskov, Phys. Chem. Chem. Phys., 2012, 14, 1235
    73. J. E. Sutton, D. G. Vlachos, ACS Catal., 2012, 2, 1624
    74. J. H. Montoya, C. Tsai, A. Vojvodic, J. K. Nørskov, ChemSusChem, 2015, 8, 2180
    75. T. Wu, C. Ma, P. Wang, H. Zhao, Y. Zhang, J. Phys-Condens. Mat., 2021, 34, 044004
    76. J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, C. M. Lok, J. Phy. Chem. C, 2008, 112, 1308
    77. M. M. Melander, M. J. Kuisma, T. E. K. Christensen, K. Honkala, J. Chem. Phys., 2019, 150, 041706
    78. T. Wu, M. Melander, K. Honkala, ACS Catal., 2022, 12, 25
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Information

Article Metrics

Article views(3477) PDF downloads(722) Citation(0)

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint