Citation: | Anqi Hu, Yingzheng Hong, Shilun Feng, Shengtai Bian. Wearable Sweat Biosensors on Sports Analysis. Materials Lab 2022, 1, 220028. doi: 10.54227/mlab.20220028 |
Wearable sensors provide methods of real-time and non-invasive monitoring of physiological status or motion for sports analytics. Still, these devices relatively have room for improvement, especially in the underexplored field of advanced material and sensing strategy. Here, we present a systematic review of wearable biosensing technology in sports analysis with a focus on materials and sensing modalities with a summary of unresolved challenges and opportunities researchers will be interested in for the future. With a deep understanding of wearable biosensing technologies, advanced wearable biosensors would have a significant impact on athletic monitoring and sports analysis.
1. | L. Wang, T. Xu, C. Fan, X. Zhang, iScience, 2020, 24, 102028 |
2. | Z. Cao, R. Wang, T. He, F. Xu, J. Sun, ACS Appl. Mater. Interfaces, 2018, 10, 14087 |
3. | R. D. Munje, S. Muthukumar, S. Prasad, Sens. Actuators B Chem., 2017, 238, 482 |
4. | L. Nayak, S. Mohanty, S. K. Nayak, A. Ramadoss, J. Mater. Chem. C, 2019, 7, 8771 |
5. | J. Cai, Q. Wang, X. Li, Y. Guan, L. He, S. Yan, R. You, Q. Zhang, Mater. Today Commun., 2020, 22, 100776 |
6. | B. Joonwon, P. Jongnam, K. Seongsoo, C. Hana, J. K. Hye, P. Soyeon, S. S. Dong, J. Ind. Eng. Chem., 2020, 89, 1 |
7. | Y. Y. Choi, D. H. Ho, J. H. Cho, ACS Appl. Mater. Interfaces, 2020, 12, 9824 |
8. | C. H. Li, C. Wang, C. Keplinger, J. L. Zuo, L. Jin, Y. Sun, P. Zheng, Y. Cao, F. Lissel, C. Linder, X. Z. You, Z. Bao, Nat. Chem., 2016, 8, 618 |
9. | R. Yu, T. Xia, B. Wu, J. Yuan, L. Ma, G. J. Cheng, F. Liu, ACS Appl. Mater. Interfaces, 2020, 12, 35291 |
10. | P. Zhang, Y. Chen, Y. Li, Y. Zhang, J. Zhang, L. Huang, Sensors, 2020, 20, 1154 |
11. | B. Yin, Y. Wen, T. Hong, Z. Xie, G. Yuan, Q. Ji, H. Jia, ACS Appl. Mater. Interfaces, 2017, 9, 32054 |
12. | Y. Zheng, R. Yin, Y. Zhao, H. Liu, C. Shen, Chem. Eng. J., 2021, 420, 127720 |
13. | M. Amjadi, K.-U. Kyung, I. Park, M. Sitti, Adv. Funct. Mater., 2016, 26, 1678 |
14. | J. Chen, J. Zhang, Z. Luo, J. Zhang, L. Li, Y. Su, X. Gao, Y. Li, W. Tang, C. Cao, Q. Liu, L. Wang, H. Li, ACS Appl. Mater. Interfaces, 2020, 12, 22200 |
15. | S. Ye, S. Feng, L. Huang, S. Bian, Biosensors, 2020, 10, 205 |
16. | S. Choi, S. I. Han, D. Kim, T. Hyeon, D. H. Kim, Chem. Soc. Rev., 2019, 48, 1566 |
17. | X. Zhang, W. Lu, G. Zhou, Q. Li, Adv. Mater., 2020, 32, 1902028 |
18. | G. Li, D. W. Lee, Lab Chip, 2017, 17, 3415 |
19. | T. Shay, O. D. Velev, M. D. Dickey, Soft Matter, 2018, 14, 3296 |
20. | G. Yun, S. Y. Tang, S. Sun, D. Yuan, Q. Zhao, L. Deng, S. Yan, H. Du, M. D. Dickey, W. Li, Nat. Commun., 2019, 10, 1300 |
21. | E. J. Markvicka, M. D. Bartlett, X. Huang, C. Majidi, Nat. Mater., 2018, 17, 618 |
22. | M. Gharakhloo, D. Jagleniec, J. Romanski, M. Karbarz, J. Mater. Chem. B., 2022, 10, 4463 |
23. | L. Lu, B. Yang, Y. Zhai, J. Liu, Nano Energy, 2020, 76, 104966 |
24. | A. Chortos, J. Liu, Z. Bao, Nat. Mater., 2016, 15, 937 |
25. | X. Jing, H. Mi, Y. Lin, E. Enriquez, X. Peng, L. Turng, ACS Appl. Mater. Interfaces., 2018, 10, 20897 |
26. | J. Yeo, Kenry, J. Yu, K. Loh, Z. Wang, C. Lim, ACS Sensors, 2016, 1, 543 |
27. | Y. Zhang, H. Guo, S. B. Kim, Y. Wu, D. Ostojich, S. H. Park, X. Wang, Z. Weng, R. Li, A. J. Bandodkar, Y. Sekine, J. Choi, S. Xu, S. Quaggin, R. Ghaffari, J. A. Rogers, Lab Chip, 2019, 19, 1545 |
28. | J. Choi, A. J. Bandodkar, J. T. Reeder, T. R. Ray, A. Turnquist, S. B. Kim, N. Nyberg, A. Hourlier-Fargette, J. B. Model, A. J. Aranyosi, S. Xu, R. Ghaffari, J. A. Rogers, ACS Sensors, 2019, 4, 379 |
29. | R. Olivia, W. Leon, F. Mike, ACM Designing Interactive Systems Conference, Electr Network, June 2021. |
30. | P. Ivan, W. G. Nan F. Shiho, E. K. Mustafa, S. Carsten, E. R. Karen, 34th Annual CHI Conference on Human Factors in Computing Systems, San Jose, CA, May 2016. |
31. | V. Mazzaracchio, L. Fiore, S. Nappi, G. Marrocco, F. Arduini, Talanta, 2021, 222, 121502 |
32. | Y. Song, J. Min, Y. Yu, H. Wang, Y. Yang, H. Zhang, W. Gao, Sci. Adv., 2020, 6, eaay9842 |
33. | J. Choi, Y. Xue, W. Xia, T. R. Ray, J. T. Reeder, A. J. Bandodkar, D. Kang, S. Xu, Y. Huang, J. A. Rogers, Lab Chip, 2017, 17, 2572 |
34. | Q. Duan, Y. Lu, ACS Appl. Mater. Interfaces, 2021, 13, 28832 |
35. | Y. S. Can, N. Chalabianloo, D. Ekiz, C. Ersoy, Sensors, 2019, 19, 1849 |
36. | J. Chen, J. Zhang, Z. Luo, Z. Zhang, L. Li, Y. Su, X. Gao, Y. Li, W. Tang, C. Cao, Q. Liu, L. Wang, H. Li, ACS Appl. Mater. Interfaces, 2020, 19, 22200 |
37. | L. Li, H. Yang, X. Li, S. Yan, A. Xu, R. You, Q. Zhang, Carbohydrate Polymers, 2021, 1, 117214 |
38. | B. Shi, L. Li, A. Chen, T. Jen, X. Liu, G. Shen, Nano-Micro Lett., 2022, 14, 34 |
39. | H. Huang, X. Ning, M. Zhou, T. Sun, X. Wu, X. Zhang, ACS Appl. Mater. Interfaces, 2021, 13, 18021 |
40. | X. Zhao, X. Wen, P. Sun, C. Zeng, M. Liu, F. Yang, H. Bi, D. Li, R. Ma, J. Wang, X. Yu, D. Zhang, H. Lu, ACS Appl. Mater. Interfaces, 2021, 13, 10428 |
41. | A. J. Bandodkar, P. Gutruf, J. Choi, K. Lee, Y. Sekine, J. T. Reeder, W. J. Jeang, A. J. Aranyosi, S. P. Lee, J. B. Model, R. Ghaffari, C. Su, J. P. Leshock, T. Ray, A. Verrillo, K. Thomas, V. Krishnamurthi, S. Han, J. Kim, S. Krishnan, T. Hang, J. A. Rogers, Sci. Adv., 2019, 5, eaav3294 |
42. | S. Seyedin, S. Uzun, A. Levitt, B. Anasori, G. Dion, Y. Gogotsi, J. M. Razal, Adv. Funct. Mater., 2020, 30, 1910504 |
43. | X. Wang, R. Guo, J. Liu, Adv. Mater. Technol., 2018, 4, 1800549 |
44. | Y. Huang, F. Yang, S. Liu, R. Wang, J. Guo, X. Ma, Research, 2021, 2021, 9847285 |
45. | L. Yu, J. C. Yeo, R. H. Soon, T. Yeo, H. H. Lee, C. T. Lim, ACS Appl. Mater. Interfaces, 2018, 10, 12773 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
(a) Young’s moduli of various substrate materials. The modulus can vary depending on the type of crosslinker, the fraction of polymer component, and curing temperature. The moduli of nanocomposites increase when nanomaterials are embedded in pure elastomer substrates[16]. Copyright 2019, Royal Society of Chemistry. (b,c) Scanning electron microscopy images of the top surface of the chitosan-based films with different Silk nanofibrils/Chitosan ratios. Scale bars: 5 μm. (b-e) cross-section images of the films. Scale bars: 1 μm. (b,d) Pure chitosan, (c,e) Silk nanofibrils/Chitosan ratios = 1/2[37]. Copyright 2021, Elsevier. (f) After electroless nickel plating, the whole acetate fabric was tightddly covered by a nickel layer[34]. Copyright 2019, American Chemical Society.
(a-c) Liquid metal was plated on a silicon dioxide surface and embedded in PDMS as a conductive trace for flexible substrate and a liquid-metal-based stretchable pulse sensor, (a) crumpling deformation, (b) stretching conditions, (c) attached to finger[18]. Copyright 2013, Li. (d-f) An enhanced liquid-metal-based microfluidic strain sensor, (f) bendability of the enhanced strain sensor[36]. Copyright, 2020, American Chemical Society. (g,h) Schematic illustration and Cross-sectional scanning electron microscopy image of MXene and zinc-coated fibers and braided coaxial hybrid fiber supercapacitors. Ti3C2Tx MXene cathode as core electrodes and zinc fiber anode shell was braided on the surface of the Ti3C2Tx fibers across the solid electrolytes[38]. Copyright 2022, Springer Nature. (i) Scanning electron microscopy image of a partially dried conductive ink showing the high-magnification microstructure of Ag aggregates. Ag aggregates surrounded by a layer of polymers (CMC and PAA) are embedded sporadically in the glycerol solvent. (j-l) The LED circuit with self-healing ability[39]. Copyright 2021, American Chemical Society.
(a) Schematic diagrams of a superabsorbent hydrogel of a wearable strain sensor for real-time sweat volume monitoring, which shows the swelling process of dry hydrogel to the final equilibrium from left to right. (b) Cross-section view of the structure of sweat glands, the wearable strain sensor is placed across the skin’s surface to absorb the sweat[1]. Copyright 2020, Royal Society of Chemistry. (c) Picture of the spiderweb-like tactile sensor and the inset shows good flexibility. (d) Overall structure image of the sensing device. (e) Image of equivalent circuit of the sensor[40]. Copyright 2021, American Chemical Society.
(a) Schematic description of EMI shielding mechanism for SS@CNTs[34]. Copyright 2019, American Chemical Society. (b) Photograph of a wearable wireless battery-free hybrid sensor system. (c) Image illustrating the device during sweating[41]. Copyright 2019, American Association for the Advancement of Science. (d) Optical images of a flexible printed circuit board (FPCB)-based sensor. Scale bars: 4 cm. (e) Schematic illustrating the sensor that integrates human motion energy harvesting, microfluidic-based sweat biosensing, signal processing, and Bluetooth-based wireless data transmission to a mobile device interface for real-time health status tracking. (f) Schematic illustration of the charge distribution and working mechanism of the freestanding triboelectric nanogenerator (FTENG)[32]. Copyright 2020, American Association for the Advancement of Science.