Citation: | Yuqing Liu, Yuyang Hou, Lili Liu, Jun Chen, Jiazhao Wang. Nanostructured carbon-based cathode materials for non-aqueous Li-O2 batteries[J]. Materials Lab, 2023, 2(1): 220015. doi: 10.54227/mlab.20220015 |
Carbon-based materials have enabled the fabrication of various energy conversion and storage devices with enhanced performances. In this paper, we review in detail different nanostructured carbon-based materials (such as commercial carbon, carbon nanotube/nanofibre, graphene, porous carbon, functionalised carbon, and composite carbon materials with noble metals and metal oxides) as cathodes for non-aqueous Li-O2 batteries. From a materials point of view, the latest trends (mostly since 2012) in the design of catalysts for non-aqueous Li-O2 batteries are discussed. Finally, a summary and outlook for nanostructured carbon-based materials for non-aqueous Li-O2 batteries are presented, including the challenges that lie ahead.
1. | W. J. Kwak, Rosy, D. Sharon, C. Xia, H. Kim, L. R. Johnson, P. G. Bruce, L. F. Nazar, Y. K. Sun, A. A. Frimer, M. Noked, S. A. Freunberger, D. Aurbach, Chem. Rev., 2020, 120, 6626 |
2. | G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, W. Wilcke, J. Phys. Chem. Lett., 2010, 1, 2193 |
3. | L. Liu, T. Ma, W. Fang, Y. Liu, K. Konstantinov, J. Wang, H. K. Liu, Energy Environ. Mater., 2021, 4, 239 |
4. | T. Liu, J. P. Vivek, E. W. Zhao, J. Lei, N. Garcia-Araez, C. P. Grey, Chem. Rev., 2020, 120, 6558 |
5. | Y. Shao, F. Ding, J. Xiao, J. Zhang, W. Xu, S. Park, J. G. Zhang, Y. Wang, J. Liu, Adv. Funct. Mater., 2013, 23, 987 |
6. | H. G. Jung, J. Hassoun, J. B. Park, Y. K. Sun, B. Scrosati, Nat. Chem., 2012, 4, 579 |
7. | J. B. Park, S. H. Lee, H. G. Jung, D. Aurbach, Y. K. Sun, Adv. Mater., 2018, 30, 1704162 |
8. | H. Yu, D. Liu, X. Feng, Y. Zhang, Energy & Fuels, 2021, 35, 4751 |
9. | P. Tan, B. Chen, H. Xu, H. Zhang, W. Cai, M. Ni, M. Liu, Z. Shao, Energy Environ. Sci., 2017, 10, 2056 |
10. | X. Gao, Z. P. Jovanov, Y. Chen, L. R. Johnson, P. G. Bruce, Angew. Chemie, 2017, 129, 6639 |
11. | L. Johnson, C. Li, Z. Liu, Y. Chen, S. A. Freunberger, P. C. Ashok, B. B. Praveen, K. Dholakia, J. M. Tarascon, P. G. Bruce, Nat. Chem., 2014, 6, 1091 |
12. | L. Liu, Y. Liu, C. Wang, X. Peng, W. Fang, Y. Hou, J. Wang, J. Ye, Y. Wu, L. L. Liu, Y. H. Liu, C. Wang, X. H. Peng, J. L. Ye, Y. P. Wu, W. W. Fang, Y. Y. Hou, J. Wang, Small Methods, 2022, 6, 2101280 |
13. | J. W. Jung, S. H. Cho, J. S. Nam, I. D. Kim, Energy Storage Mater., 2020, 24, 512 |
14. | Z. Ma, X. Yuan, L. Li, Z. F. Ma, D. P. Wilkinson, L. Zhang, J. Zhang, Energy Environ. Sci., 2015, 8, 2144 |
15. | A. Manthiram, L. Li, Adv. Energy Mater., 2015, 5, 1401302 |
16. | J. Lu, L. Li, J. B. Park, Y. K. Sun, F. Wu, K. Amine, Chem. Rev., 2014, 114, 5611 |
17. | A. C. Luntz, B. D. McCloskey, Chem. Rev., 2014, 114, 11721 |
18. | Y. Shao, S. Park, J. Xiao, J. G. Zhang, Y. Wang, J. Liu, ACS Catal., 2012, 2, 844 |
19. | M. Park, H. Sun, H. Lee, J. Lee, J. Cho, Adv. Energy Mater., 2012, 2, 780 |
20. | A. Ostadhossein, J. Guo, F. Simeski, M. Ihme, Commun. Chem., 2019, 2, 1 |
21. | H. C. Lee, V. Roev, T. Y. Kim, M. S. Park, D. J. Lee, D. Im, S. G. Doo, J. Power Sources, 2016, 331, 122 |
22. | P. J. Gierszewski, P. A. Finn, D. W. Kirk, Fusion Eng. Des., 1990, 13, 59 |
23. | J. P. Zheng, R. Y. Liang, M. Hendrickson, E. J. Plichta, J. Electrochem. Soc., 2008, 155, A432 |
24. | S. A. Freunberger, Y. Chen, N. E. Drewett, L. J. Hardwick, F. Bardé, P. G. Bruce, Angew. Chemie Int. Ed., 2011, 50, 8609 |
25. | Z. Peng, S. A. Freunberger, Y. Chen, P. G. Bruce, Science, 2012, 337, 563 |
26. | Y. C. Lu, Z. Xu, H. A. Gasteiger, S. Chen, K. Hamad-Schifferli, Y. Shao-Horn, J. Am. Chem. Soc., 2010, 132, 12170 |
27. | S. A. Freunberger, Y. Chen, Z. Peng, J. M. Griffin, L. J. Hardwick, F. Bardé, P. Novák, P. G. Bruce, J. Am. Chem. Soc., 2011, 133, 8040 |
28. | P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. M. Tarascon, Nat. Mater., 2012, 11, 19 |
29. | J. Lee, T. H. Lee, H. W. Jang, H. S. Park, InfoMat, 2022, 4, e12268 |
30. | C. Shu, J. Wang, J. Long, H. K. Liu, S. X. Dou, Adv. Mater., 2019, 31, 1804587 |
31. | Y. Cong, Q. Tang, X. Wang, M. Liu, J. Liu, Z. Geng, R. Cao, X. Zhang, W. Zhang, K. Huang, S. Feng, ACS Catal., 2019, 9, 11743 |
32. | X. Gao, Y. Chen, L. Johnson, P. G. Bruce, Nat. Mater., 2016, 15, 882 |
33. | K. Aitola, K. Domanski, J.-P. Correa-Baena, K. Sveinbjörnsson, M. Saliba, A. Abate, M. Grätzel, E. Kauppinen, E. M. J Johansson, W. Tress, A. Hagfeldt, G. K. Boschloo Aitola, K. Sveinbjörnsson, E. M. J Johansson, G. Boschloo, K. Domanski, M. Saliba, M. Grätzel, W. Tress, J. Correa-Baena, A. Abate, E. Kauppinen, A. Hagfeldt, Adv. Mater., 2017, 29, 1606398 |
34. | Q. Q. Chu, B. Ding, J. Peng, H. Shen, X. Li, Y. Liu, C. X. Li, C. J. Li, G. J. Yang, T. P. White, K. R. Catchpole, J. Mater. Sci. Technol., 2019, 35, 987 |
35. | Z. Liu, Y. Zhong, B. Sun, X. Liu, J. Han, T. Shi, Z. Tang, G. Liao, ACS Appl. Mater. Interfaces, 2017, 9, 22361 |
36. | V. Yarlagadda, M. K. Carpenter, T. E. Moylan, R. S. Kukreja, R. Koestner, W. Gu, L. Thompson, A. Kongkanand, ACS Energy Lett., 2018, 3, 618 |
37. | C. F. Liu, Y. C. Liu, T. Y. Yi, C. C. Hu, Carbon, 2019, 145, 529 |
38. | P. Huang, C. Lethien, S. Pinaud, K. Brousse, R. Laloo, V. Turq, M. Respaud, A. Demortière, B. Daffos, P. L. Taberna, B. Chaudret, Y. Gogotsi, P. Simon, Science, 2016, 351, 691 |
39. | C. Prehal, C. Koczwara, N. Jäckel, A. Schreiber, M. Burian, H. Amenitsch, M. A. Hartmann, V. Presser, O. Paris, Nat. Energy, 2017, 2, 16215 |
40. | C. Zhang, Z. Huang, W. Lv, Q. Yun, F. Kang, Q. H. Yang, Carbon, 2017, 123, 744 |
41. | R. Wang, J. Yang, X. Chen, Y. Zhao, W. Zhao, G. Qian, S. Li, Y. Xiao, H. Chen, Y. Ye, G. Zhou, F. Pan, R. Wang, J. Yang, X. Chen, Y. Zhao, W. Zhao, G. Qian, S. Li, Y. Xiao, F. Pan, H. Chen, Y. Ye, G. Zhou, Adv. Energy Mater., 2020, 10, 1903550 |
42. | X. Wang, Y. Tan, Z. Liu, Y. Fan, M. Li, H. A. Younus, J. Duan, H. Deng, S. Zhang, X. Wang, Y. Tan, Z. Liu, Y. Fan, M. Li, H. A. Younus, S. Zhang, J. Duan, H. Deng, Small, 2020, 16, 2000266 |
43. | M. M. Storm, M. Overgaard, R. Younesi, N. E. A. Reeler, T. Vosch, U. G. Nielsen, K. Edström, P. Norby, Carbon, 2015, 85, 233 |
44. | M. Ben Osman, W. Yin, T. Petenzi, B. Jousselme, R. Cornut, E. Raymundo-Pinero, A. Grimaud, C. L. Robert, Electrochim. Acta., 2020, 354, 136643 |
45. | Y. H. Tsou, Y. Y. Chuang, J. S. Chen, J. Colloid Interface Sci., 2020, 562, 213 |
46. | Y. Xing, Y. Yang, R. Chen, M. Luo, N. Chen, Y. Ye, J. Qian, L. Li, F. Wu, S. Guo, Y. Xing, Y. Yang, M. Luo, N. Chen, S. Guo, R. Chen, Y. Ye, J. Qian, L. Li, F. Wu, Small, 2018, 14, 1704366 |
47. | A. I. Belova, D. G. Kwabi, L. V. Yashina, Y. Shao-Horn, D. M. Itkis, J. Phys. Chem. C, 2017, 121, 1569 |
48. | Y. Tu, D. Deng, X. Bao, J. Energy Chem., 2016, 25, 957 |
49. | H. Woo, J. Kang, J. Kim, C. Kim, S. Nam, B. Park, Electron. Mater. Lett., 2016, 12, 551 |
50. | C. Y. Jung, T. S. Zhao, L. Zeng, P. Tan, J. Power Sources, 2016, 331, 82 |
51. | W. Li, C. Han, K. Zhang, S. Chou, S. Dou, J. Mater. Chem. A, 2021, 9, 6671 |
52. | A. Débart, J. Bao, G. Armstrong, P. G. Bruce, J. Power Sources, 2007, 174, 1177 |
53. | A. Débart, A. J. Paterson, J. Bao, P. G. Bruce, Angew. Chemie Int. Ed., 2008, 47, 4521 |
54. | B. D. McCloskey, R. Scheffler, A. Speidel, D. S. Bethune, R. M. Shelby, A. C. Luntz, J. Am. Chem. Soc., 2011, 133, 18038 |
55. | J. G. Zhang, D. Wang, W. Xu, J. Xiao, R. E. Williford, J. Power Sources, 2010, 195, 4332 |
56. | J. Xiao, D. Wang, W. Xu, D. Wang, R. E. Williford, J. Liu, J.-G. Zhang, J. Electrochem. Soc., 2010, 157, A487 |
57. | D. Wang, J. Xiao, W. Xu, J.-G. Zhang, J. Electrochem. Soc., 2010, 157, A760 |
58. | W. Xu, J. Xiao, D. Wang, J. Zhang, J.-G. Zhang, J. Electrochem. Soc., 2010, 157, A219 |
59. | J. Zhang, W. Xu, W. Liu, J. Power Sources, 2010, 195, 7438 |
60. | H. Yuan, J. A. Read, Y. Wang, Mater. Today Energy, 2019, 14, 100360 |
61. | C. Xia, M. Waletzko, L. Chen, K. Peppler, P. J. Klar, J. Janek, ACS Appl. Mater. Interfaces, 2014, 6, 12083 |
62. | B. M. Gallant, R. R. Mitchell, D. G. Kwabi, J. Zhou, L. Zuin, C. V. Thompson, Y. Shao-Horn, J. Phys. Chem. C, 2012, 116, 20800 |
63. | W. Fan, Z. Cui, X. Guo, J. Phys. Chem. C, 2013, 117, 2623 |
64. | X. Guo, N. Zhao, Adv. Energy Mater., 2013, 3, 1413 |
65. | J. Li, B. Peng, G. Zhou, Z. Zhang, Y. Lai, M. Jia, ECS Electrochem. Lett., 2013, 2, A25 |
66. | K. Zhang, L. Zhang, X. Chen, X. He, X. Wang, S. Dong, L. Gu, Z. Liu, C. Huang, G. Cui, ACS Appl. Mater. Interfaces, 2013, 5, 3677 |
67. | Y. Liu, B. Li, Z. Cheng, C. Li, X. Zhang, S. Guo, P. He, H. Zhou, J. Power Sources, 2018, 395, 439 |
68. | R. R. Mitchell, B. M. Gallant, C. V. Thompson, Y. Shao-Horn, Energy Environ. Sci., 2011, 4, 2952 |
69. | C. Hee-Dae Lim, K.-Y. Park, H. Song, E. Yun Jang, H. Gwon, J. Kim, Y. Hyup Kim, M. D. Lima, R. Ovalle Robles, X. Lepró, R. H. Baughman, K. Kang, H. Lim, K. Park, H. Gwon, J. Kim, K. Kang, H. Song, E. Y. Jang, Y. H. Kim, M. D. Lima, R. O. Robles, X. Lepró, R. H. Baughman Alan G MacDiarmid, Adv. Mater., 2013, 25, 1348 |
70. | Y. Chen, F. Li, D. M. Tang, Z. Jian, C. Liu, D. Golberg, A. Yamada, H. Zhou, J. Mater. Chem. A, 2013, 1, 13076 |
71. | J. Liu, Nat. Nanotechnol., 2014, 9, 739 |
72. | Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Adv. Mater., 2010, 22, 3906 |
73. | Y. Sun, Q. Wu, G. Shi, Energy Environ. Sci., 2011, 4, 1113 |
74. | C. M. Das, L. Kang, Q. Ouyang, K. Yong, InfoMat, 2020, 2, 698 |
75. | K. Chi, Z. Zhang, J. Xi, Y. Huang, F. Xiao, S. Wang, Y. Liu, ACS Appl. Mater. Interfaces, 2014, 6, 16312 |
76. | Y. Li, J. Wang, X. Li, D. Geng, R. Li, X. Sun, Chem. Commun., 2011, 47, 9438 |
77. | J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G. L. Graff, W. D. Bennett, Z. Nie, L. V. Saraf, I. A. Aksay, J. Liu, J. G. Zhang, Nano Lett., 2011, 11, 5071 |
78. | X. Lin, L. Zhou, T. Huang, A. Yu, J. Mater. Chem. A, 2012, 1, 1239 |
79. | F. Soavi, S. Monaco, M. Mastragostino, J. Power Sources, 2013, 224, 115 |
80. | Z. L. Wang, D. Xu, J. J. Xu, L. L. Zhang, X. B. Zhang, Adv. Funct. Mater., 2012, 22, 3699 |
81. | T. C. Hsieh, Y. H. Tsou, J. S. Chen, Electrochim. Acta, 2019, 295, 490 |
82. | Z. Guo, D. Zhou, X. Dong, Z. Qiu, Y. Wang, Y. Xia, Adv. Mater., 2013, 25, 5668 |
83. | D. M. Itkis, D. A. Semenenko, E. Y. Kataev, A. I. Belova, V. S. Neudachina, A. P. Sirotina, M. Hävecker, D. Teschner, A. Knop-Gericke, P. Dudin, A. Barinov, E. A. Goodilin, Y. Shao-Horn, L. V. Yashina, Nano Lett., 2013, 13, 4697 |
84. | M. M. Ottakam Thotiyl, S. A. Freunberger, Z. Peng, Y. Chen, Z. Liu, P. G. Bruce, Nat. Mater., 2013, 12, 1050 |
85. | S. H. Oh, L. F. Nazar, Adv. Energy Mater., 2012, 2, 903 |
86. | J. Shui, F. Du, C. Xue, Q. Li, L. Dai, ACS Nano, 2014, 8, 3015 |
87. | X. Ren, B. Wang, J. Zhu, J. Liu, W. Zhang, Z. Wen, Phys. Chem. Chem. Phys., 2015, 17, 14605 |
88. | Y. S. Jeong, J. B. Park, H. G. Jung, J. Kim, X. Luo, J. Lu, L. Curtiss, K. Amine, Y. K. Sun, B. Scrosati, Y. J. Lee, Nano Lett., 2015, 15, 4261 |
89. | Y. Yang, M. Shi, Q. F. Zhou, Y. S. Li, Z. W. Fu, Electrochem. Commun., 2012, 20, 11 |
90. | J. J. Xu, Z. L. Wang, D. Xu, L. L. Zhang, X. B. Zhang, Nat. Commun., 2013, 4, 2438 |
91. | J. Lu, Y. Lei, K. C. Lau, X. Luo, P. Du, J. Wen, R. S. Assary, U. Das, D. J. Miller, J. W. Elam, H. M. Albishri, D. A. El-Hady, Y. K. Sun, L. A. Curtiss, K. Amine, Nat. Commun., 2014, 5, 3290 |
92. | Y. C. Lu, H. A. Gasteiger, Y. Shao-Horn, J. Am. Chem. Soc., 2011, 133, 19048 |
93. | J. R. Harding, Y. C. Lu, Y. Tsukada, Y. Shao-Horn, Phys. Chem. Chem. Phys., 2012, 14, 10540 |
94. | H. G. Jung, Y. S. Jeong, J. B. Park, Y. K. Sun, B. Scrosati, Y. J. Lee, ACS Nano, 2013, 7, 3532 |
95. | B. Sun, X. Huang, S. Chen, P. Munroe, G. Wang, Nano Lett., 2014, 14, 3145 |
96. | B. Sun, S. Chen, H. Liu, G. Wang, Adv. Funct. Mater., 2015, 25, 4436 |
97. | F. Li, S. Wu, D. Li, T. Zhang, P. He, A. Yamada, H. Zhou, Nat. Commun., 2015, 6, 7843 |
98. | R. Black, J. H. Lee, B. Adams, C. A. Mims, L. F. Nazar, Angew. Chemie Int. Ed., 2013, 52, 392 |
99. | W. H. Ryu, T. H. Yoon, S. H. Song, S. Jeon, Y. J. Park, I. D. Kim, Nano Lett., 2013, 13, 4190 |
100. | J. G. Kim, Y. Kim, Y. Noh, W. B. Kim, ChemSusChem, 2015, 8, 1752 |
101. | X. Cao, J. Wu, C. Jin, J. Tian, P. Strasser, R. Yang, ACS Catal., 2015, 5, 4890 |
102. | W. M. Liu, T. T. Gao, Y. Yang, Q. Sun, Z. W. Fu, Phys. Chem. Chem. Phys., 2013, 15, 15806 |
103. | J. Gao, X. Cai, J. Wang, M. Hou, L. Lai, L. Zhang, Chem. Eng. J., 2018, 352, 972 |
104. | J. Cheng, Y. Jiang, M. Zhang, L. Zou, Y. Huang, Z. Wang, B. Chi, J. Pu, J. Li, Phys. Chem. Chem. Phys., 2017, 19, 10227 |
105. | Y. Yang, W. Yin, S. Wu, X. Yang, W. Xia, Y. Shen, Y. Huang, A. Cao, Q. Yuan, ACS Nano, 2016, 10, 1240 |
106. | W. J. Kwak, K. C. Lau, C. D. Shin, K. Amine, L. A. Curtiss, Y. K. Sun, ACS Nano, 2015, 9, 4129 |
107. | C. W. B. Bezerra, L. Zhang, K. Lee, H. Liu, A. L. B. Marques, E. P. Marques, H. Wang, J. Zhang, Electrochim. Acta, 2008, 53, 4937 |
108. | M. Lefèvre, E. Proietti, F. Jaouen, J. P. Dodelet, Science, 2009, 324, 71 |
109. | J. L. Shui, N. K. Karan, M. Balasubramanian, S. Y. Li, D. J. Liu, J. Am. Chem. Soc., 2012, 134, 16654 |
110. | L. Yu, Y. Shen, Y. Huang, J. Alloys Compd., 2014, 595, 185 |
111. | Q. Li, P. Xu, W. Gao, S. Ma, G. Zhang, R. Cao, J. Cho, H. L. Wang, G. Wu, Adv. Mater., 2014, 26, 1378 |
112. | Y. Peng, Z. Chen, R. Zhang, W. Zhou, P. Gao, J. Wu, H. Liu, J. Liu, A. Hu, X. Chen, Nano-Micro Lett., 2021, 13, 1 |
113. | Y. Peng, R. Zhang, B. Fan, W. Li, Z. Chen, H. Liu, P. Gao, S. Ni, J. Liu, X. Chen, Small, 2020, 16, 2003724 |
114. | W. Li, R. Zhang, Z. Chen, B. Fan, K. Xiao, H. Liu, P. Gao, J. Wu, C. Tu, J. Liu, Small, 2021, 17, 2100397 |
115. | M. Asadi, B. Sayahpour, P. Abbasi, A. T. Ngo, K. Karis, J. R. Jokisaari, C. Liu, B. Narayanan, M. Gerard, P. Yasaei, X. Hu, A. Mukherjee, K. C. Lau, R. S. Assary, F. Khalili-Araghi, R. F. Klie, L. A. Curtiss, A. Salehi-Khojin, Nature, 2018, 555, 502 |
116. | C. Liu, W. R. Brant, R. Younesi, Y. Dong, K. Edström, T. Gustafsson, J. Zhu, ChemSusChem, 2017, 10, 1592 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Schematic illustration of the morphological evolution of the discharge product during the 1st and higher cycle numbers and the corresponding influence on the charging voltage. [62] Copyright 2012, American Chemical Society.
Discharge-charge performance of lithium-oxygen batteries with a graphene nanosheets (GNSs), b BP-2000, and c Vulcan XC-72 cathodes at a current density of 75 mA g−1.[76] Copyright 2011, The Royal Society of Chemistry.
Morphologies of graphene-based air electrode. a, b SEM images of as-prepared FGS (C/O = 14) air electrodes. c, d Discharged air electrode containing FGS with C/O = 14 and C/O =100, respectively. e Transmission electron microscope (TEM) image of discharged air electrode consisting of FGS with C/O = 14. f Selected area electron diffraction (SAED) pattern of the Li2O2 particles on FGS with C/O = 14. [77] Copyright 2011, American Chemical Society.
Cycling performance of Li-O2 batteries at a current density of 250mA g−1 with a fixed capacity of 1000mAh g−1 using different wt% MMCSAs: a 0, b 5, c 10, d 30, e 50 and f 80wt%. [82] Copyright 2013, Wiley-VCH Verlag GmbH & Co. KGaA.
SEM image of VA-NCCF and first charge-discharge curve of the VA-NCCF electrode under current density of 100 mA g−1.[86] Copyright 2014, American Chemical Society.
Discharge-charge voltage curves of lithium-air batteries using noble metal catalysts supported on rGO electrode. Results for specific current of 200 mA g−1, over 10 h. a, 1st cycle for catalyst-free and catalyst-loaded rGO electrodes, b, Pt-rGO hybrid, c, Pd-rGO hybrid, and d, Ru-rGO hybride. [88] Copyright 2015, American Chemical Society.
Discharge-charge cycles for Li-air cells using rGO, Ru-rGO hybrid, and Ru2O·0.64H2O-rGO hybrid under various specific capacity limits. a-c, Current = 200 mA g−1; time = 10 h; cycling capacity = 2000 mAh g−l; voltage profiles of a, fifth cycle and following cycles of b, Ru-rGO hybrid and c, Ru2O·0.64H2O-rGO hybrid. (d-f) Current = 500 mA g−1; time = 10 h; cycling capacity =
a, First discharge-charge profiles for Li-O2 cells with KetJenblack (KB) or Co3O4/rGO/KB at 25 °C at a current rate of 140 mA g−l. b, XRD patterns of the cells in a on first discharge. Reflections of Li2O2 are marked. c, SEM micrographs of the discharged electrodes at
Schematic illustration of the synthetic strategy for the Co3O4 NF/GNF composite. [99] Copyright 2013, American Chemical Society.
a, The first discharge/charge profiles of Li-O2 batteries with pristine-carbon nanotube, Mo2C, and Mo2C/carbon nanotube electrodes. b, Cycling performance of the Li-O2 battery with the Mo2C/carbon nanotube electrode at a discharge capacity of 500 mA h gtotal−1 and a current density of 100 mA gtotal−1. c, The first 10 cycles of Li-O2 batteries with the Mo2C/carbon nanotube electrode at current densities of 100, 200, 500, and