Citation: | Shurong Wang, Cheng Wu, Huanhuan Yao, Feng Hao. Dimensional tailoring endows tin halide perovskite solar cells with high efficiency and stability[J]. Materials Lab, 2023, 2(1): 220047. doi: 10.54227/mlab.20220047 |
Tin halide perovskite solar cells (TPSCs) have been recognized as one of the most promising candidates for efficient and stable eco-friendly photovoltaic technology. The certified power conversion efficiency of TPSCs has been delivered to over 14% recently. Emerging low-dimensional tin halide perovskites such as Ruddlesden-Popper (RP), Dion−Jacobson (DJ), or 2D-3D perovskite structures have recently offered new approaches to stabilizing tin perovskite devices. Given the important role of low-dimensional tin perovskites, in this review, we focused on the dimensionality regulation in TPSCs to clarify the rule of performance and stability. We first discussed the structural flexibility and optoelectronic properties of tin halide perovskites. Moreover, the updated development along with the use of large organic spacer cations was assessed. Last, we reviewed the status of RP, DJ, 2D-3D mixed perovskites, and surface passivation strategy to boost the efficiency and operational stability of TPSCs, further highlighting the current challenges to enhancing these key performance metrics.
1. | A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc., 2009, 131, 6050 |
2. | M. Kim, J. Jeong, H. Lu, T. K. Lee, F. T. Eickemeyer, Y. Liu, I. W. Choi, S. J. Choi, Y. Jo, H.-B. Kim, Science, 2022, 375, 302 |
3. | M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, K. Bothe, D. Hinken, M. Rauer, X. Hao, Prog. Photovoltaics Res. Appl., 2022, 30, 687 |
4. | S. Wang, A. Wang, F. Hao, iScience, 2022, 25, 103599 |
5. | A. H. Slavney, T. Hu, A. M. Lindenberg, H. I. Karunadasa, J. Am. Chem. Soc., 2016, 138, 2138 |
6. | C. C. Stoumpos, L. Frazer, D. J. Clark, Y. S. Kim, S. H. Rhim, A. J. Freeman, J. B. Ketterson, J. I. Jang, M. G. Kanatzidis, J. Am. Chem. Soc., 2015, 137, 6804 |
7. | L. Ma, F. Hao, C. C. Stoumpos, B. T. Phelan, M. R. Wasielewski, M. G. Kanatzidis, J. Am. Chem. Soc., 2016, 138, 14750 |
8. | D. Cortecchia, H. A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P. P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, N. Mathews, Inorg. Chem., 2016, 55, 1044 |
9. | M. Pazoki, M. B. Johansson, H. Zhu, P. Broqvist, T. Edvinsson, G. Boschloo, E. M. J. Johansson, J. Phys. Chem. C, 2016, 120, 29039 |
10. | S. Gu, R. Lin, Q. Han, Y. Gao, H. Tan, J. Zhu, Adv. Mater., 2020, 32, 1907392 |
11. | X. Zhang, S. Wang, W. Zhu, Z. Cao, A. Wang, F. Hao, Adv. Funct. Mater., 2022, 32, 2108832 |
12. | F. Hao, C. C. Stoumpos, P. Guo, N. Zhou, T. J. Marks, R. P. H. Chang, M. G. Kanatzidis, J. Am. Chem. Soc., 2015, 137, 11445 |
13. | F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Nat. Photonics, 2014, 8, 489 |
14. | N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, H. J. Snaith, Energy Environ. Sci., 2014, 7, 3061 |
15. | B.-B. Yu, Z. Chen, Y. Zhu, Y. Wang, B. Han, G. Chen, X. Zhang, Z. Du, Z. He, Adv. Mater., 2021, 33, 2102055 |
16. | W. Ke, C. C. Stoumpos, M. G. Kanatzidis, Adv. Mater., 2019, 31, 1803230 |
17. | G. Grancini, M. K. Nazeeruddin, Nat. Rev. Mater., 2019, 4, 4 |
18. | D. Yu, Q. Wei, H. Li, J. Xie, X. Jiang, T. Pan, H. Wang, M. Pan, W. Zhou, W. Liu, P. C. Y. Chow, Z. Ning, Angew. Chem. Int. Ed., 2022, 61, e202202346 |
19. | H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, S. Tretiak, Nature, 2016, 536, 312 |
20. | C. C. Stoumpos, C. M. M. Soe, H. Tsai, W. Nie, J.-C. Blancon, D. H. Cao, F. Liu, B. Traoré, C. Katan, J. Even, Chem, 2017, 2, 427 |
21. | I. Spanopoulos, I. Hadar, W. Ke, Q. Tu, M. Chen, H. Tsai, Y. He, G. Shekhawat, V. P. Dravid, M. R. Wasielewski, J. Am. Chem. Soc., 2019, 141, 5518 |
22. | S. Shao, J. Liu, G. Portale, H.-H. Fang, G. R. Blake, G. H. ten Brink, L. J. A. Koster, M. A. Loi, Adv. Energy Mater., 2018, 8, 1702019 |
23. | Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Quintero-Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, Z. Ning, J. Am. Chem. Soc., 2017, 139, 6693 |
24. | D. H. Cao, C. C. Stoumpos, T. Yokoyama, J. L. Logsdon, T.-B. Song, O. K. Farha, M. R. Wasielewski, J. T. Hupp, M. G. Kanatzidis, ACS Energy Lett., 2017, 2, 982 |
25. | M. Chen, Q. Dong, F. T. Eickemeyer, Y. Liu, Z. Dai, A. D. Carl, B. Bahrami, A. H. Chowdhury, R. L. Grimm, Y. Shi, Q. Qiao, S. M. Zakeeruddin, M. Grätzel, N. P. Padture, ACS Energy Lett., 2020, 5, 2223 |
26. | J. Qiu, Y. Xia, Y. Zheng, W. Hui, H. Gu, W. Yuan, H. Yu, L. Chao, T. Niu, Y. Yang, X. Gao, Y. Chen, W. Huang, ACS Energy Lett., 2019, 4, 1513 |
27. | D. B. Mitzi, C. A. Feild, W. T. A. Harrison, A. M. Guloy, Nature, 1994, 369, 467 |
28. | D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, A. M. Guloy, Science, 1995, 267, 1473 |
29. | C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis, Inorg. Chem., 2013, 52, 9019 |
30. | Q. Sun, Z. Fang, Y. Zheng, Z. Yang, F. Hu, Y. Yang, W. Yang, X. Hou, M.-H. Shang, J. Mater. Chem. A, 2022, 10, 3996 |
31. | H. Xu, Y. Jiang, T. He, S. Li, H. Wang, Y. Chen, M. Yuan, J. Chen, Adv. Funct. Mater., 2019, 29, 1807696 |
32. | C. Ran, W. Gao, J. Li, J. Xi, L. Li, J. Dai, Y. Yang, X. Gao, H. Dong, B.Jiao, I. Spanopoulos, C. D. Malliakas, X. Hou, M. G. Kanatzidis, Z.Wu, Joule, 2019, 3, 3072 |
33. | J. Even, L. Pedesseau, C. Katan, J. Phys. Chem. C, 2014, 118, 11566 |
34. | C. M. Mauck, W. A. Tisdale, Trends Chem., 2019, 1, 380 |
35. | Y. Zhai, S. Baniya, C. Zhang, J. Li, P. Haney, C.-X. Sheng, E. Ehrenfreund, Z. V. Vardeny, Sci. Adv., 2017, 3, e1700704 |
36. | S. Narra, C.-Y. Lin, A. Seetharaman, E. Jokar, E. W.-G. Diau, J. Phys. Chem. Lett., 2021, 12, 12292 |
37. | M. A. Becker, R. Vaxenburg, G. Nedelcu, P. C. Sercel, A. Shabaev, M. J. Mehl, J. G. Michopoulos, S. G. Lambrakos, N. Bernstein, J. L. Lyons, T. Stöferle, R. F. Mahrt, M. V. Kovalenko, D. J. Norris, G. Rainò, A. L. Efros, Nature, 2018, 553, 189 |
38. | D. Marongiu, M. Saba, F. Quochi, A. Mura, G. Bongiovanni, J. Mater. Chem. C, 2019, 7, 12006 |
39. | C. Gao, Y. Jiang, C. Sun, J. Han, T. He, Y. Huang, K. Yao, M. Han, X. Wang, Y. Wang, Y. Gao, Y. Liu, M. Yuan, H. Liang, ACS Photonics, 2020, 7, 1915 |
40. | X. Liu, T. Wu, J.-Y. Chen, X. Meng, X. He, T. Noda, H. Chen, X. Yang, H. Segawa, Y. Wang, L. Han, Energy Environ. Sci., 2020, 13, 2896 |
41. | T. Zhang, C. Zhou, J. Lin, J. Wang, ACS Photonics, 2022, 9, 1627 |
42. | A. Mahata, D. Meggiolaro, L. Gregori, F. De Angelis, J. Phys. Chem. C, 2021, 125, 10901 |
43. | E. Nakanishi, R. Nishikubo, A. Wakamiya, A. Saeki, J. Phys. Chem. Lett., 2020, 11, 4043 |
44. | H.-H. Fang, S. Adjokatse, S. Shao, J. Even, M. A. Loi, Nat. Commun., 2018, 9, 243 |
45. | I. Chung, B. Lee, J. He, R. P. H. Chang, M. G. Kanatzidis, Nature, 2012, 485, 486 |
46. | P. Wang, F. Li, K.-J. Jiang, Y. Zhang, H. Fan, Y. Zhang, Y. Miao, J.-H. Huang, C. Gao, X. Zhou, F. Wang, L.-M. Yang, C. Zhan, Y. Song, Adv. Sci., 2020, 7, 1903047 |
47. | T. Shi, H.-S. Zhang, W. Meng, Q. Teng, M. Liu, X. Yang, Y. Yan, H.-L. Yip, Y.-J. Zhao, J. Mater. Chem. A, 2017, 5, 15124 |
48. | Z. Zhao, F. Gu, Y. Li, W. Sun, S. Ye, H. Rao, Z. Liu, Z. Bian, C. Huang, Adv. Sci., 2017, 4, 1700204 |
49. | S. Wang, L. Yan, W. Zhu, Z. Cao, L. Zhou, L. Ding, F. Hao, Nano Energy, 2022, 99, 107416 |
50. | X. Jiang, F. Wang, Q. Wei, H. Li, Y. Shang, W. Zhou, C. Wang, P. Cheng, Q. Chen, L. Chen, Z. Ning, Nat. Commun., 2020, 11, 1245 |
51. | S. Shao, J. Dong, H. Duim, G. H. ten Brink, G. R. Blake, G. Portale, M. A. Loi, Nano Energy, 2019, 60, 810 |
52. | E. Jokar, C.-H. Chien, A. Fathi, M. Rameez, Y.-H. Chang, E. W.-G. Diau, Energy Environ. Sci., 2018, 11, 2353 |
53. | E. Jokar, C. H. Chien, C. M. Tsai, A. Fathi, E. W. G. Diau, Adv. Mater., 2019, 31, 1804835 |
54. | K. Chen, P. Wu, W. Yang, R. Su, D. Luo, X. Yang, Y. Tu, R. Zhu, Q. Gong, Nano Energy, 2018, 49, 411 |
55. | M. Chen, M.-G. Ju, M. Hu, Z. Dai, Y. Hu, Y. Rong, H. Han, X. C. Zeng, Y. Zhou, N. P. Padture, ACS Energy Lett., 2019, 4, 276 |
56. | M. E. Kayesh, K. Matsuishi, R. Kaneko, S. Kazaoui, J.-J. Lee, T. Noda, A. Islam, ACS Energy Lett., 2019, 4, 278 |
57. | J. Dong, S. Shao, S. Kahmann, A. J. Rommens, D. Hermida-Merino, G. H. ten Brink, M. A. Loi, G. Portale, Adv. Funct. Mater., 2020, 30, 2001294 |
58. | Z. Zhao, F. Gu, C. Wang, G. Zhan, N. Zheng, Z. Bian, Z. Liu, Solar RRL, 2020, 4, 2000315 |
59. | P. Li, X. Liu, Y. Zhang, C. Liang, G. Chen, F. Li, M. Su, G. Xing, X. Tao, Y. Song, Angew. Chem. Int. Ed., 2020, 132, 6976 |
60. | M. Li, W.-W. Zuo, Y.-G. Yang, M. Aldamasy, Q. Wang, S. H. T. Cruz, S.-L. Feng, M. Saliba, Z.-K. Wang, A. Abate, ACS Energy Lett., 2020, 5, 1923 |
61. | P. Li, H. Dong, J. Xu, J. Chen, B. Jiao, X. Hou, J. Li, Z. Wu, ACS Energy Lett., 2020, 5, 2327 |
62. | X. Meng, Y. Wang, J. Lin, X. Liu, X. He, J. Barbaud, T. Wu, T. Noda, X. Yang, L. Han, Joule, 2020, 4, 902 |
63. | L. Ji, D. Liu, Y. Wang, T. Zhang, H. Chen, Y. Li, H. Zheng, Y. Yang, Z. David Chen, W. Yang, L. Chen, S. Li, Chem. Eng. J., 2020, 402, 125133 |
64. | K. Nishimura, M. A. Kamarudin, D. Hirotani, K. Hamada, Q. Shen, S. Iikubo, T. Minemoto, K. Yoshino, S. Hayase, Nano Energy, 2020, 74, 104858 |
65. | J. Li, P. Hu, Y. Chen, Y. Li, M. Wei, ACS Sustain. Chem. Eng., 2020, 8, 8624 |
66. | J. Qiu, Y. Lin, X. Ran, Q. Wei, X. Gao, Y. Xia, P. Müller-Buschbaum, Y. Chen, Sci. Chi. Chem., 2021, 64, 1577 |
67. | E. Jokar, P.-Y. Cheng, C.-Y. Lin, S. Narra, S. Shahbazi, E. Wei-Guang Diau, ACS Energy Lett., 2021, 6, 485 |
68. | B. Chang, B. Li, Z. Wang, H. Li, L. Wang, L. Pan, Z. Li, L. Yin, Adv. Funct. Mater., 2022, 32, 2107710 |
69. | Z. Zhang, A. Kumar Baranwal, S. Razey Sahamir, G. Kapil, Y. Sanehira, M. Chen, K. Nishimura, C. Ding, D. Liu, H. Li, Solar RRL, 2021, 5, 2100633 |
70. | F. Wang, X. Jiang, H. Chen, Y. Shang, H. Liu, J. Wei, W. Zhou, H. He, W. Liu, Z. Ning, Joule, 2018, 2, 2732 |
71. | I. H. Park, L. Chu, K. Leng, Y. F. Choy, W. Liu, I. Abdelwahab, Z. Zhu, Z. Ma, W. Chen, Q. H. Xu, Adv. Funct. Mater., 2019, 29, 1904810 |
72. | W. Kaiser, D. Ricciarelli, E. Mosconi, A. A. Alothman, F. Ambrosio, F. De Angelis, J. Phys. Chem. Lett., 2022, 13, 2321 |
73. | D. Ricciarelli, W. Kaiser, E. Mosconi, J. Wiktor, M. W. Ashraf, L. Malavasi, F. Ambrosio, F. De Angelis, ACS Energy Lett., 2022, 7, 1308 |
74. | S. J. Yang, D. Kim, J. Choi, S. H. Kim, K. Park, S. Ryu, K. Cho, Adv. Mater., 2021, 33, 2102797 |
75. | I. Zimmermann, S. Aghazada, M. K. Nazeeruddin, Angew. Chem. Int. Ed., 2019, 131, 1084 |
76. | A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han, Science, 2014, 345, 295 |
77. | G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, M. K. Nazeeruddin, Nat. Commun., 2017, 8, 15684 |
78. | D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, M. G. Kanatzidis, J. Am. Chem. Soc., 2015, 137, 7843 |
79. | D. Ramirez, K. Schutt, Z. Wang, A. J. Pearson, E. Ruggeri, H. J. Snaith, S. D. Stranks, F. Jaramillo, ACS Energy Lett., 2018, 3, 2246 |
80. | H. Li, X. Jiang, Q. Wei, Z. Zang, M. Ma, F. Wang, W. Zhou, Z. Ning, Angew. Chem. Int. Ed., 2021, 133, 16466 |
81. | L. Lanzetta, T. Webb, N. Zibouche, X. Liang, D. Ding, G. Min, R. J. Westbrook, B. Gaggio, T. J. Macdonald, M. S. Islam, Nat. Commun., 2021, 12, 1 |
82. | D. Ricciarelli, D. Meggiolaro, F. Ambrosio, F. De Angelis, ACS Energy Lett., 2020, 5, 2787 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The structural variation from 3D to 2D tin halide perovskites.
TAS spectra of a (BA)2FASnI4 and (BA)2FASn2I7 perovskites and b (BA)2FA4Sn5I16 and (BA)2FA9Sn10I31 perovskites, respectively.[36] Copyright 2021, American Chemical Society. c The φΣμ of (GAxFA1-x)0.9PEA0.1SnI3 perovskites with a different structure.[43] Copyright 2020, American Chemical Society. Normalized PL spectra of 3D FASnI3 thin films at d 274 K and e 293 K, respectively. f Schematic diagram of blue-shifted PL caused by band filling.[44] Copyright 2018, Spring Nature.
PCE development of the reported TPSCs with the original 3D and low-dimensional structure.[13, 15, 23-25, 31, 40, 14, 49-69]
The molecular structures of bulky organic cations used in low-dimensional tin halide perovskites.[15, 26, 32, 40, 49, 51, 55, 56, 58, 59, 61, 62, 64, 65, 67-71]
a The S and σ, and b ρ of (PEA)2(MA)n−1SnnI3n+1 perovskites concerning MACl. c The Ef and HOMO level of 2D tin perovskites and MACl-added 2D tin perovskites.[74] Copyright 2021, Wiley-VCH GmbH. d-e GIWAXS spectra of AVA2FA4Sn4I16 tin perovskites with 0% and 10 mol% NH4Cl additives.[31] Copyright 2019, Wiley-VCH GmbH. f XRD patterns of the effect of ALA+ adding.[58] Copyright 2020, Wiley-VCH GmbH.
a, The chemical structure of (FSA)2SnI4 and (FSA)2MASn2I7 tin perovskites.[71] Copyright 2019, Wiley-VCH GmbH. b, Schematic diagram of the crystallization process of BAAcO-induced perovskites. c-d, TAS spectra of 2D RP perovskites excited from the surface. e, The pattern of phase distribution and carrier dynamics based on BAAcO-induced perovskites. [66] Copyright 2021, Science China Press.
a, Energy level diagram for three isomeric fluorinated ligands modification.[61] Copyright 2020, American Chemical Society. b, HOMO and LUMO distributions of PEA+ and PPA+. c, Radially integrated intensity plots of the GIWAX along (100) orientation.[32] Copyright 2019, Elsevier. d, XRD patterns of 3D FASnI3 and FPEABr-induced 2D-3D tin perovskite with different amounts of FPEABr. e, Statistical diagram of 3D FASnI3 and FPEABr-induced 2D-3D tin perovskite devices.[15] Copyright 2021, Wiley-VCH GmbH.
a, Diagram of templated growth of PPA-FASnI3 perovskite films.[40] Copyright 2020, Royal Society of Chemistry. b, Schematic diagram of sequential deposition by surface treatment of 2D organic cations.[67] Copyright 2021, American Chemical Society.