Shurong Wang, Cheng Wu, Huanhuan Yao, Feng Hao. Dimensional tailoring endows tin halide perovskite solar cells with high efficiency and stability[J]. Materials Lab, 2023, 2(1): 220047. doi: 10.54227/mlab.20220047
Citation: Shurong Wang, Cheng Wu, Huanhuan Yao, Feng Hao. Dimensional tailoring endows tin halide perovskite solar cells with high efficiency and stability[J]. Materials Lab, 2023, 2(1): 220047. doi: 10.54227/mlab.20220047

REVIEW ARTICLE

Dimensional tailoring endows tin halide perovskite solar cells with high efficiency and stability

Published as part of the Virtual Special Issue "Mercouri G. Kanatzidis at 65"

More Information
  • Corresponding author: haofeng@uestc.edu.cn
  • Tin halide perovskite solar cells (TPSCs) have been recognized as one of the most promising candidates for efficient and stable eco-friendly photovoltaic technology. The certified power conversion efficiency of TPSCs has been delivered to over 14% recently. Emerging low-dimensional tin halide perovskites such as Ruddlesden-Popper (RP), Dion−Jacobson (DJ), or 2D-3D perovskite structures have recently offered new approaches to stabilizing tin perovskite devices. Given the important role of low-dimensional tin perovskites, in this review, we focused on the dimensionality regulation in TPSCs to clarify the rule of performance and stability. We first discussed the structural flexibility and optoelectronic properties of tin halide perovskites. Moreover, the updated development along with the use of large organic spacer cations was assessed. Last, we reviewed the status of RP, DJ, 2D-3D mixed perovskites, and surface passivation strategy to boost the efficiency and operational stability of TPSCs, further highlighting the current challenges to enhancing these key performance metrics.


  • 加载中
  • Shurong Wang is currently pursuing her PhD under the supervision of Prof. Feng Hao at School of Materials and Energy, University of Electronic Science and Technology of China. She received her BS in Applied Chemistry (2017) and ME in Environmental Engineering (2020) from Nanjing University of Information Science and Technology. Her current research focuses on component engineering and defect engineering for perovskite solar cells.
    Feng Hao received his PhD degree from Tsinghua University in 2012. Then he moved to Northwestern University as a postdoc for four years in the Department of Chemistry. He is now a full professor at the School of Materials and Energy, University of Electronic Science and Technology of China. His research focuses on perovskite solar cells and photonic materials.
  • 1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc., 2009, 131, 6050
    2. M. Kim, J. Jeong, H. Lu, T. K. Lee, F. T. Eickemeyer, Y. Liu, I. W. Choi, S. J. Choi, Y. Jo, H.-B. Kim, Science, 2022, 375, 302
    3. M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, K. Bothe, D. Hinken, M. Rauer, X. Hao, Prog. Photovoltaics Res. Appl., 2022, 30, 687
    4. S. Wang, A. Wang, F. Hao, iScience, 2022, 25, 103599
    5. A. H. Slavney, T. Hu, A. M. Lindenberg, H. I. Karunadasa, J. Am. Chem. Soc., 2016, 138, 2138
    6. C. C. Stoumpos, L. Frazer, D. J. Clark, Y. S. Kim, S. H. Rhim, A. J. Freeman, J. B. Ketterson, J. I. Jang, M. G. Kanatzidis, J. Am. Chem. Soc., 2015, 137, 6804
    7. L. Ma, F. Hao, C. C. Stoumpos, B. T. Phelan, M. R. Wasielewski, M. G. Kanatzidis, J. Am. Chem. Soc., 2016, 138, 14750
    8. D. Cortecchia, H. A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P. P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, N. Mathews, Inorg. Chem., 2016, 55, 1044
    9. M. Pazoki, M. B. Johansson, H. Zhu, P. Broqvist, T. Edvinsson, G. Boschloo, E. M. J. Johansson, J. Phys. Chem. C, 2016, 120, 29039
    10. S. Gu, R. Lin, Q. Han, Y. Gao, H. Tan, J. Zhu, Adv. Mater., 2020, 32, 1907392
    11. X. Zhang, S. Wang, W. Zhu, Z. Cao, A. Wang, F. Hao, Adv. Funct. Mater., 2022, 32, 2108832
    12. F. Hao, C. C. Stoumpos, P. Guo, N. Zhou, T. J. Marks, R. P. H. Chang, M. G. Kanatzidis, J. Am. Chem. Soc., 2015, 137, 11445
    13. F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Nat. Photonics, 2014, 8, 489
    14. N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, H. J. Snaith, Energy Environ. Sci., 2014, 7, 3061
    15. B.-B. Yu, Z. Chen, Y. Zhu, Y. Wang, B. Han, G. Chen, X. Zhang, Z. Du, Z. He, Adv. Mater., 2021, 33, 2102055
    16. W. Ke, C. C. Stoumpos, M. G. Kanatzidis, Adv. Mater., 2019, 31, 1803230
    17. G. Grancini, M. K. Nazeeruddin, Nat. Rev. Mater., 2019, 4, 4
    18. D. Yu, Q. Wei, H. Li, J. Xie, X. Jiang, T. Pan, H. Wang, M. Pan, W. Zhou, W. Liu, P. C. Y. Chow, Z. Ning, Angew. Chem. Int. Ed., 2022, 61, e202202346
    19. H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, S. Tretiak, Nature, 2016, 536, 312
    20. C. C. Stoumpos, C. M. M. Soe, H. Tsai, W. Nie, J.-C. Blancon, D. H. Cao, F. Liu, B. Traoré, C. Katan, J. Even, Chem, 2017, 2, 427
    21. I. Spanopoulos, I. Hadar, W. Ke, Q. Tu, M. Chen, H. Tsai, Y. He, G. Shekhawat, V. P. Dravid, M. R. Wasielewski, J. Am. Chem. Soc., 2019, 141, 5518
    22. S. Shao, J. Liu, G. Portale, H.-H. Fang, G. R. Blake, G. H. ten Brink, L. J. A. Koster, M. A. Loi, Adv. Energy Mater., 2018, 8, 1702019
    23. Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Quintero-Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, Z. Ning, J. Am. Chem. Soc., 2017, 139, 6693
    24. D. H. Cao, C. C. Stoumpos, T. Yokoyama, J. L. Logsdon, T.-B. Song, O. K. Farha, M. R. Wasielewski, J. T. Hupp, M. G. Kanatzidis, ACS Energy Lett., 2017, 2, 982
    25. M. Chen, Q. Dong, F. T. Eickemeyer, Y. Liu, Z. Dai, A. D. Carl, B. Bahrami, A. H. Chowdhury, R. L. Grimm, Y. Shi, Q. Qiao, S. M. Zakeeruddin, M. Grätzel, N. P. Padture, ACS Energy Lett., 2020, 5, 2223
    26. J. Qiu, Y. Xia, Y. Zheng, W. Hui, H. Gu, W. Yuan, H. Yu, L. Chao, T. Niu, Y. Yang, X. Gao, Y. Chen, W. Huang, ACS Energy Lett., 2019, 4, 1513
    27. D. B. Mitzi, C. A. Feild, W. T. A. Harrison, A. M. Guloy, Nature, 1994, 369, 467
    28. D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, A. M. Guloy, Science, 1995, 267, 1473
    29. C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis, Inorg. Chem., 2013, 52, 9019
    30. Q. Sun, Z. Fang, Y. Zheng, Z. Yang, F. Hu, Y. Yang, W. Yang, X. Hou, M.-H. Shang, J. Mater. Chem. A, 2022, 10, 3996
    31. H. Xu, Y. Jiang, T. He, S. Li, H. Wang, Y. Chen, M. Yuan, J. Chen, Adv. Funct. Mater., 2019, 29, 1807696
    32. C. Ran, W. Gao, J. Li, J. Xi, L. Li, J. Dai, Y. Yang, X. Gao, H. Dong, B.Jiao, I. Spanopoulos, C. D. Malliakas, X. Hou, M. G. Kanatzidis, Z.Wu, Joule, 2019, 3, 3072
    33. J. Even, L. Pedesseau, C. Katan, J. Phys. Chem. C, 2014, 118, 11566
    34. C. M. Mauck, W. A. Tisdale, Trends Chem., 2019, 1, 380
    35. Y. Zhai, S. Baniya, C. Zhang, J. Li, P. Haney, C.-X. Sheng, E. Ehrenfreund, Z. V. Vardeny, Sci. Adv., 2017, 3, e1700704
    36. S. Narra, C.-Y. Lin, A. Seetharaman, E. Jokar, E. W.-G. Diau, J. Phys. Chem. Lett., 2021, 12, 12292
    37. M. A. Becker, R. Vaxenburg, G. Nedelcu, P. C. Sercel, A. Shabaev, M. J. Mehl, J. G. Michopoulos, S. G. Lambrakos, N. Bernstein, J. L. Lyons, T. Stöferle, R. F. Mahrt, M. V. Kovalenko, D. J. Norris, G. Rainò, A. L. Efros, Nature, 2018, 553, 189
    38. D. Marongiu, M. Saba, F. Quochi, A. Mura, G. Bongiovanni, J. Mater. Chem. C, 2019, 7, 12006
    39. C. Gao, Y. Jiang, C. Sun, J. Han, T. He, Y. Huang, K. Yao, M. Han, X. Wang, Y. Wang, Y. Gao, Y. Liu, M. Yuan, H. Liang, ACS Photonics, 2020, 7, 1915
    40. X. Liu, T. Wu, J.-Y. Chen, X. Meng, X. He, T. Noda, H. Chen, X. Yang, H. Segawa, Y. Wang, L. Han, Energy Environ. Sci., 2020, 13, 2896
    41. T. Zhang, C. Zhou, J. Lin, J. Wang, ACS Photonics, 2022, 9, 1627
    42. A. Mahata, D. Meggiolaro, L. Gregori, F. De Angelis, J. Phys. Chem. C, 2021, 125, 10901
    43. E. Nakanishi, R. Nishikubo, A. Wakamiya, A. Saeki, J. Phys. Chem. Lett., 2020, 11, 4043
    44. H.-H. Fang, S. Adjokatse, S. Shao, J. Even, M. A. Loi, Nat. Commun., 2018, 9, 243
    45. I. Chung, B. Lee, J. He, R. P. H. Chang, M. G. Kanatzidis, Nature, 2012, 485, 486
    46. P. Wang, F. Li, K.-J. Jiang, Y. Zhang, H. Fan, Y. Zhang, Y. Miao, J.-H. Huang, C. Gao, X. Zhou, F. Wang, L.-M. Yang, C. Zhan, Y. Song, Adv. Sci., 2020, 7, 1903047
    47. T. Shi, H.-S. Zhang, W. Meng, Q. Teng, M. Liu, X. Yang, Y. Yan, H.-L. Yip, Y.-J. Zhao, J. Mater. Chem. A, 2017, 5, 15124
    48. Z. Zhao, F. Gu, Y. Li, W. Sun, S. Ye, H. Rao, Z. Liu, Z. Bian, C. Huang, Adv. Sci., 2017, 4, 1700204
    49. S. Wang, L. Yan, W. Zhu, Z. Cao, L. Zhou, L. Ding, F. Hao, Nano Energy, 2022, 99, 107416
    50. X. Jiang, F. Wang, Q. Wei, H. Li, Y. Shang, W. Zhou, C. Wang, P. Cheng, Q. Chen, L. Chen, Z. Ning, Nat. Commun., 2020, 11, 1245
    51. S. Shao, J. Dong, H. Duim, G. H. ten Brink, G. R. Blake, G. Portale, M. A. Loi, Nano Energy, 2019, 60, 810
    52. E. Jokar, C.-H. Chien, A. Fathi, M. Rameez, Y.-H. Chang, E. W.-G. Diau, Energy Environ. Sci., 2018, 11, 2353
    53. E. Jokar, C. H. Chien, C. M. Tsai, A. Fathi, E. W. G. Diau, Adv. Mater., 2019, 31, 1804835
    54. K. Chen, P. Wu, W. Yang, R. Su, D. Luo, X. Yang, Y. Tu, R. Zhu, Q. Gong, Nano Energy, 2018, 49, 411
    55. M. Chen, M.-G. Ju, M. Hu, Z. Dai, Y. Hu, Y. Rong, H. Han, X. C. Zeng, Y. Zhou, N. P. Padture, ACS Energy Lett., 2019, 4, 276
    56. M. E. Kayesh, K. Matsuishi, R. Kaneko, S. Kazaoui, J.-J. Lee, T. Noda, A. Islam, ACS Energy Lett., 2019, 4, 278
    57. J. Dong, S. Shao, S. Kahmann, A. J. Rommens, D. Hermida-Merino, G. H. ten Brink, M. A. Loi, G. Portale, Adv. Funct. Mater., 2020, 30, 2001294
    58. Z. Zhao, F. Gu, C. Wang, G. Zhan, N. Zheng, Z. Bian, Z. Liu, Solar RRL, 2020, 4, 2000315
    59. P. Li, X. Liu, Y. Zhang, C. Liang, G. Chen, F. Li, M. Su, G. Xing, X. Tao, Y. Song, Angew. Chem. Int. Ed., 2020, 132, 6976
    60. M. Li, W.-W. Zuo, Y.-G. Yang, M. Aldamasy, Q. Wang, S. H. T. Cruz, S.-L. Feng, M. Saliba, Z.-K. Wang, A. Abate, ACS Energy Lett., 2020, 5, 1923
    61. P. Li, H. Dong, J. Xu, J. Chen, B. Jiao, X. Hou, J. Li, Z. Wu, ACS Energy Lett., 2020, 5, 2327
    62. X. Meng, Y. Wang, J. Lin, X. Liu, X. He, J. Barbaud, T. Wu, T. Noda, X. Yang, L. Han, Joule, 2020, 4, 902
    63. L. Ji, D. Liu, Y. Wang, T. Zhang, H. Chen, Y. Li, H. Zheng, Y. Yang, Z. David Chen, W. Yang, L. Chen, S. Li, Chem. Eng. J., 2020, 402, 125133
    64. K. Nishimura, M. A. Kamarudin, D. Hirotani, K. Hamada, Q. Shen, S. Iikubo, T. Minemoto, K. Yoshino, S. Hayase, Nano Energy, 2020, 74, 104858
    65. J. Li, P. Hu, Y. Chen, Y. Li, M. Wei, ACS Sustain. Chem. Eng., 2020, 8, 8624
    66. J. Qiu, Y. Lin, X. Ran, Q. Wei, X. Gao, Y. Xia, P. Müller-Buschbaum, Y. Chen, Sci. Chi. Chem., 2021, 64, 1577
    67. E. Jokar, P.-Y. Cheng, C.-Y. Lin, S. Narra, S. Shahbazi, E. Wei-Guang Diau, ACS Energy Lett., 2021, 6, 485
    68. B. Chang, B. Li, Z. Wang, H. Li, L. Wang, L. Pan, Z. Li, L. Yin, Adv. Funct. Mater., 2022, 32, 2107710
    69. Z. Zhang, A. Kumar Baranwal, S. Razey Sahamir, G. Kapil, Y. Sanehira, M. Chen, K. Nishimura, C. Ding, D. Liu, H. Li, Solar RRL, 2021, 5, 2100633
    70. F. Wang, X. Jiang, H. Chen, Y. Shang, H. Liu, J. Wei, W. Zhou, H. He, W. Liu, Z. Ning, Joule, 2018, 2, 2732
    71. I. H. Park, L. Chu, K. Leng, Y. F. Choy, W. Liu, I. Abdelwahab, Z. Zhu, Z. Ma, W. Chen, Q. H. Xu, Adv. Funct. Mater., 2019, 29, 1904810
    72. W. Kaiser, D. Ricciarelli, E. Mosconi, A. A. Alothman, F. Ambrosio, F. De Angelis, J. Phys. Chem. Lett., 2022, 13, 2321
    73. D. Ricciarelli, W. Kaiser, E. Mosconi, J. Wiktor, M. W. Ashraf, L. Malavasi, F. Ambrosio, F. De Angelis, ACS Energy Lett., 2022, 7, 1308
    74. S. J. Yang, D. Kim, J. Choi, S. H. Kim, K. Park, S. Ryu, K. Cho, Adv. Mater., 2021, 33, 2102797
    75. I. Zimmermann, S. Aghazada, M. K. Nazeeruddin, Angew. Chem. Int. Ed., 2019, 131, 1084
    76. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han, Science, 2014, 345, 295
    77. G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, M. K. Nazeeruddin, Nat. Commun., 2017, 8, 15684
    78. D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, M. G. Kanatzidis, J. Am. Chem. Soc., 2015, 137, 7843
    79. D. Ramirez, K. Schutt, Z. Wang, A. J. Pearson, E. Ruggeri, H. J. Snaith, S. D. Stranks, F. Jaramillo, ACS Energy Lett., 2018, 3, 2246
    80. H. Li, X. Jiang, Q. Wei, Z. Zang, M. Ma, F. Wang, W. Zhou, Z. Ning, Angew. Chem. Int. Ed., 2021, 133, 16466
    81. L. Lanzetta, T. Webb, N. Zibouche, X. Liang, D. Ding, G. Min, R. J. Westbrook, B. Gaggio, T. J. Macdonald, M. S. Islam, Nat. Commun., 2021, 12, 1
    82. D. Ricciarelli, D. Meggiolaro, F. Ambrosio, F. De Angelis, ACS Energy Lett., 2020, 5, 2787
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Information

Article Metrics

Article views(3604) PDF downloads(945) Citation(0)

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint