Citation: | Wenjia Song, Hongbo Guo. CMAS dilemma in jet engines: beginning or ending?[J]. Materials Lab, 2023, 2(1): 220042. doi: 10.54227/mlab.20220042 |
Jet engines are susceptible to contamination by environmental debris (volcanic ash, sand, and dust, called CMAS). When CMAS ash is ingested into gas turbines, it melts and can attach to hot components of the jet engines that may clog engine parts and damage protective ceramic thermal barrier coatings (TBCs). The engine’s performance may be impeded and can even cause catastrophic failure when this contamination is in excess. This research presents the current understanding of these CMAS challenges in nature and deposit-induced failure mechanisms of TBCs. The strategy mitigation of new functional TBCs to stop the wetting of CMAS explained the details of experimental and theoretical analysis of the melting and impacting processes of CMAS ash in jet engines.
1. | N. P. Padture, Nat. Mater., 2016, 15, 804 |
2. | C. G. Levi, J. W. Hutchinson, C. A. Johnson, MRS Bull., 2012, 37, 932 |
3. | K. Sanderson, Nature, 2010, 464, 1253 |
4. | D. L. Poerschke, R. W. Jackson, C. G. Levi, Annu. Rev. Mater. Res., 2017, 47, 297 |
5. | A. Nieto, R. Agrawal, L. Bravo, C. Hofmeister-Mork, M. Pepi, A. Ghoshal, Int. Mater. Rev., 2020, 1824414 |
6. | M.J. Walock, V. Heng, A. Nieto, A. Ghoshal, M. Murugan, D. Driemeyer, J. Eng, Gas Turbines Power, 2018, 140, 102101 |
7. | J. L. Smialek, F. A. Archer, R. G. Garlick, JOM, 1994, 46, 39 |
8. | D. B. Dingwell, Y. Lavallée, U. Kueppers, Phys. Chem. Earth, 2012, 45−46, 2 |
9. | F. Sigmundsson, S. Hreinsdóttir, A. Hooper, T. Árnadóttir, R. Pedersen, M. J. Roberts, N. Óskarsson, A. Auriac, J. Decriem, P. Einarsson, H. Geirsson, M. Hensch, B. G. Ófeigsson, E. Sturkell, H. Sveinbjórnsson, K. L. Feigl, Nature, 2010, 468, 426 |
10. | W. Song, K. Hess, D. E. Damby, F. B. Wadsworth, Y. Lavallée, C. Cimarelli, D. B. Dingwell, Geophys. Res. Lett., 2014, 41, 2326 |
11. | J. Warnatz, U. Maas, R. W. Dibble, Combustion, Springer-Verlag Berlin Heidelberg, Germany, 2006. |
12. | U. Kueppers, C. Cimarelli, K. Hess, J. Taddeucci, F. B. Wadsworth, D. B. Dingwell, J. Appl. Volcanol., 2014, 3, 4 |
13. | W. Ai, N. Murray, T. H. Fletcher, S. Harding, J. P. Bons, J. Turbomach., 2011, 134, 041021 |
14. | R. Sivakumar, B. L. Mordike, Surf. Coat. Technol., 1989, 37, 139 |
15. | D. R. Clarke, M. Oechsner, N. P. Padture, MRS Bull., 2012, 37, 891 |
16. | D. R. Clarke, C. G. Levi, Annu. Rev. Mater. Res., 2003, 33, 383 |
17. | S. Sampath, U. Schulz, M. O. Jarligo, MRS Bull., 2012, 37, 903 |
18. | A. G. Evans, J. W. Hutchinson, S. Kuroda, Surf. Coat. Technol., 2007, 201, 7905 |
19. | M. G. Dunn, J. Turbomach., 2012, 134, 051001 |
20. | C. R. Cosher, M. G. Dunn, J. Eng. Gas Turbines Power, 2016, 138, 121201 |
21. | J.M. Drexler, A.L. Ortiz, N.P. Padture, Acta Mater., 2012, 60, 5437 |
22. | A. Aygun, A. L. Vasiliev, N. P. Padture, X. Ma, Acta Mater., 2007, 55, 6734 |
23. | W. Song, Y. Lavallée, K. Hess, U. Kueppers, C. Cimarelli, D. B. Dingwell, Nat. Commun., 2016, 7, 10795 |
24. | W. Song, S. Yang, M. Fukumoto, Y. Lavallée, S. Lokachari, H. Guo, Y. You, D. B. Dingwell, Acta Materialia, 2019, 171, 119 |
25. | S. Lokachari, W. Song, M. Fukumoto, Y. Lavallée, H. Guo, Y. You, D. B. Dingwell, Corros. Sci., 2020, 168, 108587 |
26. | M. P. Schmitt, A. K. Rai, R. Bhattacharya, D. Zhu, D. E. Wolfe, Surf. Coat. Tech., 2014, 251, 56 |
27. | L. Guo, M. Li, C. Yang, C. Zhang, L. Xu, F. Ye, C. Dan, V. Ji, Ceram. Int., 2017, 43, 10521 |
28. | J. H. Perepezko, T. A. Sossaman, M. Taylor, J. Therm. Spray. Tech., 2017, 26, 929 |
29. | J. M. Drexler, A. D. Gledhill, K. Shinoda, A. L. Vasiliev, K. M. Reddy, S. Sampath, N. P. Padture, Adv. Mater., 2011, 23, 2419 |
30. | J. M. Drexler, C. H. Chen, A. D. Gledhill, K. Shinoda, S. Sampath, N. P. Padture, Surf. Coat. Technol., 2012, 206, 3911 |
31. | T. Wagner, C. Neinhuis, W. Barthlott, Acta Zoologica, 1996, 77, 213 |
32. | B. Zhang, W. Song, L. Wei, Y. Xiu, H. Xu, H. Guo, Scr. Mater., 2019, 163, 71 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
CMAS issues in jet engines. a, Schematic of hazards from CMAS on jet engines. b, Schematic of jet engines attacked by CMAS, along with volcanic ash.
The melting and impacting process of CMAS in jet engines. a, The definition of four characteristic temperatures. b, The impact mechanisms of a single CMAS droplet on the APS TBCs (Left) and EB-PVD TBCs (Right).
Lotus effect. (a) Water droplet onto a lotus leaf, along with (b) corresponding surface structure. (c) Water droplet onto the irradiated YSZ coating. (d) Eyjafjallajökull volcanic ash onto the irradiated YSZ coating.