Citation: | Jingwen Bai, Lijun Yang, Yuanyuan Zhang, Xiaofu Sun, Jian Liu. Tin sulfide chalcogel derived SnSx for CO2 electroreduction[J]. Materials Lab, 2023, 2(1): 220046. doi: 10.54227/mlab.20220046 |
A new class of aerogels based exclusively on metal chalcogenide frameworks have been developed, opening up a series of novel properties and applications. Further expanding the application of such chalcogels in electrocatalytic CO2 reduction is of significance for mitigating the rise of atmospheric CO2 concentration. Herein, the tin sulfide chalcogel was employed as a pre-catalyst for the construction of efficient electrocatalysts for CO2 reduction. SnS0.09 and SnS0.55 supported on carbon cloth (SnS0.09/CC and SnS0.55/CC) were obtained with different amounts of sulfur by cyclic voltammetry activation of the tin sulfide chalcogel at different potential intervals. Compared with SnS0.09/CC, SnS0.55/CC with higher S contents exhibited a higher formate Faraday efficiency of 93.1% at −1.1 V verse reversible hydrogen electrode, and the partial current density of formate was 28.4 mA/cm2. The difference in performance between SnS0.09/CC and SnS0.55/CC could be attributed to the varying sulfur contents which could favor the formation of formate.
1. | S. Bag, P. N. Trikalitis, P. J. Chupas, G. S. Armatas and M. G. Kanatzidis, Science, 2007, 317, 490 |
2. | S. Bag, I. U. Arachchige and M. G. Kanatzidis, J. Mater. Chem., 2008, 18, 3628 |
3. | S. Bag, A. F. Gaudette, M. E. Bussell and M. G. Kanatzidis, Nat. Chem., 2009, 1, 217 |
4. | Y. Oh, S. Bag, C. D. Malliakas and M. G. Kanatzidis, Chem. Mater., 2011, 23, 2447 |
5. | K. Polychronopoulou, C. D. Malliakas, J. He and M. G. Kanatzidis, Chem. Mater., 2012, 24, 3380 |
6. | S. Chandrasekaran, L. Yao, L. Deng, C. Bowen, Y. Zhang, S. Chen, Z. Lin, F. Peng and P. Zhang, Chem. Soc. Rev., 2019, 48, 4178 |
7. | Y. Zhang, Y. Zhang, H. Zhang, L. Bai, L. Hao, T. Ma and H. Huang, Coord. Chem. Rev., 2021, 448, 214147 |
8. | K. S. Subrahmanyam, D. Sarma, C. D. Malliakas, K. Polychronopoulou, B. J. Riley, D. A. Pierce, J. Chun and M. G. Kanatzidis, Chem. Mater., 2015, 27, 2619 |
9. | Y. Shim, R. M. Young, A. P. Douvalis, S. M. Dyar, B. D. Yuhas, T. Bakas, M. R. Wasielewski and M. G. Kanatzidis, J. Am. Chem. Soc., 2014, 136, 13371 |
10. | K. S. Subrahmanyam, C. D. Malliakas, S. M. Islam, D. Sarma, J. Wu and M. G. Kanatzidis, Chem. Mater., 2016, 28, 7744 |
11. | B. D. Yuhas, C. Prasittichai, J. T. Hupp and M. G. Kanatzidis, J. Am. Chem. Soc., 2011, 133, 15854 |
12. | A. Banerjee, B. D. Yuhas, E. A. Margulies, Y. Zhang, Y. Shim, M. R. Wasielewski and M. G. Kanatzidis, J. Am. Chem. Soc., 2015, 137, 2030 |
13. | M. Shafaei-Fallah, A. Rothenberger, A. P. Katsoulidis, J. He, C. D. Malliakas and M. G. Kanatzidis, Adv. Mater., 2011, 23, 4857 |
14. | K. S. Subrahmanyam, I. Spanopoulos, J. H. Chun, B. J. Riley, P. K. Thallapally, P. N. Trikalitis and M. G. Kanatzidis, ACS Appl. Mater. Interfaces, 2017, 9, 33389 |
15. | Z. Hassanzadeh Fard, S. M. Islam and M. G. Kanatzidis, Chem. Mater., 2015, 27, 6189 |
16. | B. J. Riley, J. Chun, W. Um, W. C. Lepry, J. Matyas, M. J. Olszta, X. Li, K. Polychronopoulou and M. G. Kanatzidis, Environ. Sci. Technol., 2013, 47, 7540 |
17. | J. Liu, K. He, W. Wu, T. B. Song and M. G. Kanatzidis, J. Am. Chem. Soc., 2017, 139, 2900 |
18. | B. D. Yuhas, A. L. Smeigh, A. P. Samuel, Y. Shim, S. Bag, A. P. Douvalis, M. R. Wasielewski and M. G. Kanatzidis, J. Am. Chem. Soc., 2011, 133, 7252 |
19. | J. Staszak-Jirkovsky, C. D. Malliakas, P. P. Lopes, N. Danilovic, S. S. Kota, K. C. Chang, B. Genorio, D. Strmcnik, V. R. Stamenkovic, M. G. Kanatzidis and N. M. Markovic, Nat. Mater., 2016, 15, 197 |
20. | X. Shan, J. Liu, H. Mu, Y. Xiao, B. Mei, W. Liu, G. Lin, Z. Jiang, L. Wen and L. Jiang, Angew Chem. Int. Ed., 2020, 59, 1659 |
21. | H. Mu, G. Lin, Y. Zhang, Y. Xiao and J. Liu, Colloids Surf. A Physicochem. Eng. Asp., 2021, 623, 126734 |
22. | G. Wang, J. Chen, Y. Ding, P. Cai, L. Yi, Y. Li, C. Tu, Y. Hou, Z. Wen and L. Dai, Chem. Soc. Rev., 2021, 50, 4993 |
23. | Y. Y. Birdja, E. Pérez-Gallent, M. C. Figueiredo, A. J. Göttle, F. Calle-Vallejo and M. T. M. Koper, Nat. Energy, 2019, 4, 732 |
24. | M. G. Kibria, J. P. Edwards, C. M. Gabardo, C. T. Dinh, A. Seifitokaldani, D. Sinton and E. H. Sargent, Adv. Mater., 2019, 31, 1807166 |
25. | S. A. Patil, H. T. Bui, S. Hussain, I. Rabani, Y. Seo, J. Jung, N. K. Shrestha, H. Kim and H. Im, Dalton Trans., 2021, 50, 12723 |
26. | S. A. Patil, N. K. Shrestha, A. I. Inamdar, C. Bathula, J. Jung, H. Im and H. Kim, Int. J. Energy Res., 2022 |
27. | S. A. Patil, N. K. Shrestha, S. Hussain, J. Jung, S. W. Lee, C. Bathula, A. N. Kadam, H. Im and H. Kim, J. Hazard. Mater., 2021, 417, 126105 |
28. | W. Yu, F. Shu, Y. Huang, F. Yang, Q. Meng, Z. Zou, J. Wang, Z. Zeng, G. Zou and S. Deng, J. Mater. Chem. A, 2020, 8, 20677 |
29. | M. Chen, S. Wan, L. Zhong, D. Liu, H. Yang, C. Li, Z. Huang, C. Liu, J. Chen, H. Pan, D. S. Li, S. Li, Q. Yan and B. Liu, Angew Chem. Int. Ed., 2021, 60, 26233 |
30. | A. Zhang, Y. Liang, H. Li, S. Wang, Q. Chang, K. Peng, Z. Geng and J. Zeng, Nano Lett., 2021, 21, 7789 |
31. | S. Zhao, S. Li, T. Guo, S. Zhang, J. Wang, Y. Wu and Y. Chen, Nano-Micro Lett., 2019, 11, 62 |
32. | F. Wei, T. Wang, X. Jiang, Y. Ai, A. Cui, J. Cui, J. Fu, J. Cheng, L. Lei, Y. Hou and S. Liu, Adv. Funct. Mater., 2020, 30, 2002092 |
33. | W. Ni, Y. Gao, Y. Lin, C. Ma, X. Guo, S. Wang and S. Zhang, ACS Catal., 2021, 11, 5212 |
34. | Z. Wu, H. Wu, W. Cai, Z. Wen, B. Jia, L. Wang, W. Jin and T. Ma, Angew Chem. Int. Ed., 2021, 60, 12554 |
35. | Y. J. Ko, J. Y. Kim, W. H. Lee, M. G. Kim, T. Y. Seong, J. Park, Y. Jeong, B. K. Min, W. S. Lee, D. K. Lee and H. S. Oh, Nat. Commun., 2022, 13, 2205 |
36. | X. Zhang, M. Jiao, Z. Chen, X. Ma, Z. Wang, N. Wang, X. Zhang and L. Liu, Chem. Eng. J., 2022, 429, 132145 |
37. | Z. Chen, X. Zhang, M. Jiao, K. Mou, X. Zhang and L. Liu, Adv. Energy Mater., 2020, 10, 1903664 |
38. | G. A. El-Nagar, A. M. Mohammad, M. S. El-Deab and B. E. El-Anadouli, ACS Appl. Mater. Interfaces, 2017, 9, 19766 |
39. | F. Joo, ChemSusChem, 2008, 1, 805 |
40. | Q.-L. Zhu and Q. Xu, Energy Environ. Sci., 2015, 8, 478 |
41. | Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang, J. Deng, Q. Ma, N. Han, Y. Zhu, J. Lu, Z. Feng, Y. Li, W. Zhou and Y. Li, Nat. Commun., 2019, 10, 2807 |
42. | S. Bag and M. G. Kanatzidis, J. Am. Chem. Soc., 2010, 132, 14951 |
43. | A. Zhang, R. He, H. Li, Y. Chen, T. Kong, K. Li, H. Ju, J. Zhu, W. Zhu and J. Zeng, Angew Chem. Int. Ed., 2018, 57, 10954 |
44. | F. Li, L. Chen, M. Xue, T. Williams, Y. Zhang, D. R. MacFarlane and J. Zhang, Nano Energy, 2017, 31, 270 |
45. | B. Ni, T. He, J. O. Wang, S. Zhang, C. Ouyang, Y. Long, J. Zhuang and X. Wang, Chem. Sci., 2018, 9, 2762 |
46. | X. Zheng, P. De Luna, F. P. García de Arquer, B. Zhang, N. Becknell, M. B. Ross, Y. Li, M. N. Banis, Y. Li, M. Liu, O. Voznyy, C. T. Dinh, T. Zhuang, P. Stadler, Y. Cui, X. Du, P. Yang and E. H. Sargent, Joule, 2017, 1, 794 |
47. | T. Shinagawa, G. O. Larrazábal, A. J. Martín, F. Krumeich and J. Pérez-Ramírez, ACS Catal., 2018, 8, 837 |
48. | Y. Zhang, L. Hu and W. Han, J. Mater. Chem. A, 2018, 6, 23610 |
49. | Y. Deng, Y. Huang, D. Ren, A. D. Handoko, Z. W. Seh, P. Hirunsit and B. S. Yeo, ACS Appl. Mater. Interfaces, 2018, 10, 28572 |
50. | W. Ma, S. Xie, X. G. Zhang, F. Sun, J. Kang, Z. Jiang, Q. Zhang, D. Y. Wu and Y. Wang, Nat. Commun., 2019, 10, 892 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Supporting_Information-2022-0046.R1 |
a SEM image, b TEM image, c HRTEM image, d XRD patterns, e Sn 3d XPS spectra and f S 2p XPS spectra of SnSx powders.
SEM images of a SnSx/CC, b SnS0.09/CC and c SnS0.55/CC; d XRD patterns, e Sn 3d XPS spectra and f S 2p XPS spectra of SnSx/CC, SnS0.09/CC and SnS0.55/CC.
In-situ electrochemical activation of SnSx by different potential regions in CV activation.
a, Geometrical current densities over the SnS0.09/CC and SnS0.55/CC in CO2- and N2-saturated 0.5 M KHCO3. b, Potential-dependent FEs of CO, H2 and formate and c, partial current densities of formate (JHCOO−) over the SnS0.09/CC and SnS0.55/CC. d, Tafel plots of the SnS0.09/CC and SnS0.55/CC. e, Charging current density differences plotted against scan rates for the SnS0.09/CC and SnS0.55/CC. The fitting slopes are twice that of the Cdl values. f, Nyquist plots of the SnS0.09/CC and SnS0.55/CC at -0.8 V vs. RHE.