Nan Ma, Xinyi Chen. Hydrogen sensors operated in oxygen-free environments[J]. Materials Lab, 2024, 3(2): 230022. doi: 10.54227/mlab.20230022
Citation: Nan Ma, Xinyi Chen. Hydrogen sensors operated in oxygen-free environments[J]. Materials Lab, 2024, 3(2): 230022. doi: 10.54227/mlab.20230022

PERSPECTIVE

Hydrogen sensors operated in oxygen-free environments

More Information
  • Corresponding author: manan@mail.sic.ac.cn
  • Hydrogen (H2) is considered a next-generation clean energy source for replacing fossil fuels, and detecting H2 leaks is crucial from a safety standpoint. As the application of H2 energy becomes increasingly diverse and complex, there is a growing need to detect H2 leaks in oxygen-free environments. However, conventional oxygen-dependent H2 sensors lose their ability to detect gas in such environments. This work briefly outlines the research progress toward developing H2 sensors that can operate in oxygen-free environments, including the sensing materials, sensor device structures, gas sensing properties and mechanisms. Finally, we present some perspectives for the future development of H2 sensors for use in oxygen-free environments.


  • 加载中
  • Nan Ma received her Ph.D in Molecular and Material Science from Kyushu University, Japan in 2015. She is currently an associate professor at Shanghai Institute of Ceramics, Chinese Academy of Sciences. Her main research interests focus on semiconductor gas sensors, ferroelectric materials and their novel applications.
    Xinyi Chen is a master student in the School of Electronic and Information Engineering at the Hebei University of Technology. Currently, she is conducting research on ferroelectric material-based gas/humidity sensors at the Shanghai Institute of Ceramics, Chinese Academy of Sciences.
  • 1. K. Suzuki, H. Miyazaki, Y. Yuzuriha, Y. Maru, N. Izu, Sensors Actuat. B: Chem., 2017, 250, 617
    2. K. Suzuki, JSAP Review, 2022, 2022, 220302
    3. Z. Wang, L. Zhu, J. Liu, J. Wang, W. Yan, Energy Fuel, 2022, 36, 6038
    4. N. M. Houlihan, N. Karker, R.-A. Potyrailo, M. A. Carpenter, ACS sensors, 2018, 3, 2684
    5. M. Madsen, J. B. Holm-Nielsen, K. H. Esbensen, Renew. Sust. Energ. Rev., 2011, 15, 3141
    6. B. Xie, S. Zhang, F. Liu, X. Peng, F. Song, G. Wang, M. Han, Sensor Actuat. A: Phys., 2012, 181, 20
    7. J. Tian, H. Jiang, X. Zhao, G. Shi, J. Zhang, X. Deng, W. Zhang, Sensors Actuat. B: Chem., 2021, 329, 129194
    8. X. Li, T. Cao, X. Zhang, Y. Sang, L. Yang, T. Wang, Y. Li, L. Zhang, L. Guo, Y. Fu, Sensors Actuat. B: Chem., 2019, 295, 101
    9. S. Öztürk, N. Kılınç, J. Alloy Compd., 2016, 674, 179
    10. D. T. Phan, G. S. Chung, Int. J. Hydrogen Energ., 2014, 39, 620
    11. M. G. Chung, D. H. Kim, D. K. Seo, T. Kim, H. U. Im, H. M. Lee, J. B. Yoo, S. H. Hong, T. J. Kang, Y. H. Kim, Sensors Actuat. B: Chem., 2012, 169, 387
    12. L. Zhang, H. Jiang, J. Zhang, Y. Huang, J. Tian, X. Deng, X. Zhao, W. Zhang, Nanotechnology, 2019, 31, 015504
    13. Q. Zhao, J. Shao, H. Tian, X. Li, C. Wang, J. Liu, Sensors Actuat. B: Chem., 2018, 270, 475
    14. Y. S. Shim, B. Jang, J. M. Suh, M. S. Noh, S. Kim, S. D. Han, Y. G. Song, D. H. Kim, C. Y. Kang, H. W. Jang, W. Lee, Sensors Actuat. B: Chem., 2018, 255, 1841
    15. J. Lee, W. Shim, E. Lee, J.-S. Noh, W. Lee, Angew Chem. Int. Ed., 2011, 50, 5301
    16. B. P. Luther, S. D. Wolter, S. E. Mohney, Sensor Actuat. B: Chem., 1999, 56, 164
    17. J. Song, W. Lu, J.-S. Flynn, G. R. Brandes, Solid-State Electron., 2005, 49, 1330
    18. S. Jang, S. Jung, J. Kim, F. Ren, S. J. Pearton, K. H. Baik, ECS J. Solid State Sci. Technol., 2018, 7, 3180
    19. S. Jang, S. Jung, K.-H. Baik, Thin Solid Films, 2018, 660, 646
    20. J. Ajayan, D. Nirmal, R. Ramesh, S. Bhattacharya, S. Tayal, L. L. Joseph, L. R. Thoutam, D. Ajitha, Measurement, 2021, 186, 110100
    21. H. Xu, Y. Liu, H. Liu, S. Dong, Y. Wu, Z. Wang, Y. Wang, M. Wu, Z. Han, L. Hao, J. Alloy Compd., 2021, 851, 156844
    22. Z. N. Zhi, W. S. Gao, J. Yang, C. Geng, B. Yang, C. Tian, S. R. Fan, H. Li, J. Li, Z. Q. Hua, Sensor Actuat. B: Chem., 2022, 367, 132137
    23. R. Wang, P. H. Wu, Z. N. Zhi, W. S. Gao, Z. Q. Hua, Chinese J. Anal. Chem., 2022, 50, 100065
    24. W. Gao, Z. Zhi, S. Fan, Z. Hua, H. Li, X. Pan, W. Sun, H. Gao, ACS Omega, 2022, 7, 24895
    25. A. Mirzaei, H.-R. Yousefi, F. Falsafi, M. Bonyani, J. H. Lee, J. H. Kim, H. W. Kim, S. S. Kim, Int. J. Hydrogen Energ., 2019, 44, 20552
    26. X. Wang, L. Du, L. Cheng, S. Zhai, C. Zhang, W. Wang, Y. Liang, D. Yang, Q. Chen, G. Lei, Sensor Actuat. B: Chem., 2022, 351, 130952
    27. C. Wang, Y. Wang, S. Y. Zhang, L. Fan, X. J. Shui, Sensors Actuat. B: Chem., 2012, 173, 710
    28. Z. Yunusa, M. N. Hamidon, A. Ismail, M. M. Isa, M. H. Yaacob, S. Rahmanian, S. A. Ibrahim, Shabaneh, Sensors, 2015, 15, 4749
    29. H. H. Nguyen, H. N. Nguyen, D. D. Dang, H. P. Nguyen, D. H. Phan, S. H. Hoang, J. Nanomater., 2017, 2017, 9057250
    30. J. Ma, Y. Zhou, X. Bai, K. Chen, B. O. Guan, Nanoscale, 2019, 11, 15821
    31. Y. S. Yi, D. C. Wu, P. Birar, Z. Yang, IEEE Sens. J., 2017, 17, 2042
    32. B. Q. Wu, C. L. Zhao, B. Xu, Y. N. Li, Sensors Actuat. B: Chem., 2018, 255, 3011
    33. L. Bannenberg, H. Schreuders, B. Dam, Adv. Funct. Mater., 2021, 31, 2010483
    34. W. T. Koo, H. J. Cho, D. H. Kim, Y. H. Kim, H. Shin, R. M. Penner, I. D. Kim, ACS Nano, 2020, 14, 14284
    35. P. S. Chauhan, S. Bhattacharya, Int. J. Hydrogen Energ., 2019, 44, 26076
    36. B. Ai, Y. Sun, Y. Zhao, Small, 2022, 18, 2107882
    37. C. C. Ndaya, N. Javahiraly, A. Brioude, Sensors, 2019, 19, 4478
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Information

Article Metrics

Article views(1193) PDF downloads(221) Citation(0)

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint