Citation: | Nan Ma, Xinyi Chen. Hydrogen sensors operated in oxygen-free environments[J]. Materials Lab, 2024, 3(2): 230022. doi: 10.54227/mlab.20230022 |
Hydrogen (H2) is considered a next-generation clean energy source for replacing fossil fuels, and detecting H2 leaks is crucial from a safety standpoint. As the application of H2 energy becomes increasingly diverse and complex, there is a growing need to detect H2 leaks in oxygen-free environments. However, conventional oxygen-dependent H2 sensors lose their ability to detect gas in such environments. This work briefly outlines the research progress toward developing H2 sensors that can operate in oxygen-free environments, including the sensing materials, sensor device structures, gas sensing properties and mechanisms. Finally, we present some perspectives for the future development of H2 sensors for use in oxygen-free environments.
1. | K. Suzuki, H. Miyazaki, Y. Yuzuriha, Y. Maru, N. Izu, Sensors Actuat. B: Chem., 2017, 250, 617 |
2. | K. Suzuki, JSAP Review, 2022, 2022, 220302 |
3. | Z. Wang, L. Zhu, J. Liu, J. Wang, W. Yan, Energy Fuel, 2022, 36, 6038 |
4. | N. M. Houlihan, N. Karker, R.-A. Potyrailo, M. A. Carpenter, ACS sensors, 2018, 3, 2684 |
5. | M. Madsen, J. B. Holm-Nielsen, K. H. Esbensen, Renew. Sust. Energ. Rev., 2011, 15, 3141 |
6. | B. Xie, S. Zhang, F. Liu, X. Peng, F. Song, G. Wang, M. Han, Sensor Actuat. A: Phys., 2012, 181, 20 |
7. | J. Tian, H. Jiang, X. Zhao, G. Shi, J. Zhang, X. Deng, W. Zhang, Sensors Actuat. B: Chem., 2021, 329, 129194 |
8. | X. Li, T. Cao, X. Zhang, Y. Sang, L. Yang, T. Wang, Y. Li, L. Zhang, L. Guo, Y. Fu, Sensors Actuat. B: Chem., 2019, 295, 101 |
9. | S. Öztürk, N. Kılınç, J. Alloy Compd., 2016, 674, 179 |
10. | D. T. Phan, G. S. Chung, Int. J. Hydrogen Energ., 2014, 39, 620 |
11. | M. G. Chung, D. H. Kim, D. K. Seo, T. Kim, H. U. Im, H. M. Lee, J. B. Yoo, S. H. Hong, T. J. Kang, Y. H. Kim, Sensors Actuat. B: Chem., 2012, 169, 387 |
12. | L. Zhang, H. Jiang, J. Zhang, Y. Huang, J. Tian, X. Deng, X. Zhao, W. Zhang, Nanotechnology, 2019, 31, 015504 |
13. | Q. Zhao, J. Shao, H. Tian, X. Li, C. Wang, J. Liu, Sensors Actuat. B: Chem., 2018, 270, 475 |
14. | Y. S. Shim, B. Jang, J. M. Suh, M. S. Noh, S. Kim, S. D. Han, Y. G. Song, D. H. Kim, C. Y. Kang, H. W. Jang, W. Lee, Sensors Actuat. B: Chem., 2018, 255, 1841 |
15. | J. Lee, W. Shim, E. Lee, J.-S. Noh, W. Lee, Angew Chem. Int. Ed., 2011, 50, 5301 |
16. | B. P. Luther, S. D. Wolter, S. E. Mohney, Sensor Actuat. B: Chem., 1999, 56, 164 |
17. | J. Song, W. Lu, J.-S. Flynn, G. R. Brandes, Solid-State Electron., 2005, 49, 1330 |
18. | S. Jang, S. Jung, J. Kim, F. Ren, S. J. Pearton, K. H. Baik, ECS J. Solid State Sci. Technol., 2018, 7, 3180 |
19. | S. Jang, S. Jung, K.-H. Baik, Thin Solid Films, 2018, 660, 646 |
20. | J. Ajayan, D. Nirmal, R. Ramesh, S. Bhattacharya, S. Tayal, L. L. Joseph, L. R. Thoutam, D. Ajitha, Measurement, 2021, 186, 110100 |
21. | H. Xu, Y. Liu, H. Liu, S. Dong, Y. Wu, Z. Wang, Y. Wang, M. Wu, Z. Han, L. Hao, J. Alloy Compd., 2021, 851, 156844 |
22. | Z. N. Zhi, W. S. Gao, J. Yang, C. Geng, B. Yang, C. Tian, S. R. Fan, H. Li, J. Li, Z. Q. Hua, Sensor Actuat. B: Chem., 2022, 367, 132137 |
23. | R. Wang, P. H. Wu, Z. N. Zhi, W. S. Gao, Z. Q. Hua, Chinese J. Anal. Chem., 2022, 50, 100065 |
24. | W. Gao, Z. Zhi, S. Fan, Z. Hua, H. Li, X. Pan, W. Sun, H. Gao, ACS Omega, 2022, 7, 24895 |
25. | A. Mirzaei, H.-R. Yousefi, F. Falsafi, M. Bonyani, J. H. Lee, J. H. Kim, H. W. Kim, S. S. Kim, Int. J. Hydrogen Energ., 2019, 44, 20552 |
26. | X. Wang, L. Du, L. Cheng, S. Zhai, C. Zhang, W. Wang, Y. Liang, D. Yang, Q. Chen, G. Lei, Sensor Actuat. B: Chem., 2022, 351, 130952 |
27. | C. Wang, Y. Wang, S. Y. Zhang, L. Fan, X. J. Shui, Sensors Actuat. B: Chem., 2012, 173, 710 |
28. | Z. Yunusa, M. N. Hamidon, A. Ismail, M. M. Isa, M. H. Yaacob, S. Rahmanian, S. A. Ibrahim, Shabaneh, Sensors, 2015, 15, 4749 |
29. | H. H. Nguyen, H. N. Nguyen, D. D. Dang, H. P. Nguyen, D. H. Phan, S. H. Hoang, J. Nanomater., 2017, 2017, 9057250 |
30. | J. Ma, Y. Zhou, X. Bai, K. Chen, B. O. Guan, Nanoscale, 2019, 11, 15821 |
31. | Y. S. Yi, D. C. Wu, P. Birar, Z. Yang, IEEE Sens. J., 2017, 17, 2042 |
32. | B. Q. Wu, C. L. Zhao, B. Xu, Y. N. Li, Sensors Actuat. B: Chem., 2018, 255, 3011 |
33. | L. Bannenberg, H. Schreuders, B. Dam, Adv. Funct. Mater., 2021, 31, 2010483 |
34. | W. T. Koo, H. J. Cho, D. H. Kim, Y. H. Kim, H. Shin, R. M. Penner, I. D. Kim, ACS Nano, 2020, 14, 14284 |
35. | P. S. Chauhan, S. Bhattacharya, Int. J. Hydrogen Energ., 2019, 44, 26076 |
36. | B. Ai, Y. Sun, Y. Zhao, Small, 2022, 18, 2107882 |
37. | C. C. Ndaya, N. Javahiraly, A. Brioude, Sensors, 2019, 19, 4478 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Progress in H2 sensors operating in oxygen-free environments.[1,7,21,22,26,30] Copyright 2017, ScienceDirect; Copyright 2021, ScienceDirect; Copyright 2022, ScienceDirect; Copyright 2019, Royal Society of Chemistry.