Citation: | Xing Chen, Cuihua Zhao, Hao Wu, Xi Zhou. The effect of Ag content on the electronic structure and optical property of α-Fe2O3[J]. Materials Lab, 2024, 3(2): 202300. doi: 10.54227/mlab.20230027 |
The electronic structure and optical properties of Ag-doped α-Fe2O3 with different Ag contents (1.67 mol%, 3.33 mol%, 5.00 mol% and 6.67 mol%) were studied by density-functional theory (DFT). α-Fe2O3 has the characteristics of semimetal after Ag doping, and the semimetal property increases with increasing Ag contents. Doped Ag loses less electrons for Ag-doped α-Fe2O3 than corresponding Fe (replaced iron) for pure α-Fe2O3, which led the weaker Ag-O bond than Fe-O bond before Ag doping. However, the number of losing electrons for Ag increases gradually with the increase of Ag content. For optical properties, it is found that the peaks of imaginary parts of dielectric function and extinction coefficient for Ag-doped α-Fe2O3 shift to low energy (red shift) relative to those of pure α-Fe2O3. In the ultraviolet range (200 nm-380 nm), Ag doping reduces the optical absorption intensity. However, the optical absorption is enhanced steeply with the increase of Ag contents in the wavelength of 420 nm to
1. | M. Imran, A. B. Yousaf, P. Kasak, A. Zeb, S. J. Zaidi, J. Catal., 2017, 353, 81 |
2. | M. Han, L. Hu, Y. Zhou, S. Zhao, L. Bai, Y. Sun, H. Huang, Y. Liu, Z. Kang, Catal. Sci. Technol., 2018, 8, 840 |
3. | S. Boumaza, H. Kabir, I. Gharbi, A. Belhadi, M. Trari, Int. J. Hydrogen Energy, 2017, 43, 3424 |
4. | Y. Geng, D. Chen, N. Li, Q. Xu, J. Lu, Appl. Catal. B, 2021, 280, 119409 |
5. | B. Sathish Mohan, K. Ravi, R. Balaji Anjaneyulu, G. Satya Sree, K. Basavaiah, Physica B: Condens. Matter, 2019, 553, 190 |
6. | L. Liu, X. Yang, C. Lv, X. Zhu, S. Guo, C. M. Chen, D. Yang, ACS Appl. Mater. Interfaces, 2016, 8, 7047 |
7. | M. V. Reddy, C. Y. Quan, S. Adams, Mater. Lett., 2018, 212186 |
8. | M. Li, C. Ma, Q. C. Zhu, S. M. Xu, J. S. Chen, Dalton. Trans., 2017, 46, 5025 |
9. | Z. Li, Y. Huang, S. Zhang, W. Chen, Z. Kuang, D. Ao, W. Liu, Y. Fu, J. Hazard. Mater., 2015, 300, 167 |
10. | X. Wang, T. Wang, G. Si, Y. Li, S. Zhang, X. Deng, X. Xu, Sensors Actuators B: Chem., 2020, 302, 127165 |
11. | R. A. Wu, C. W. Lin, W. J. Tseng, Ceram. Int., 2017, 43, S535 |
12. | L. E. Mathevula, L. L. Noto, B. M. Mothudi, M. Chithambo, M. S. Dhlamini, J. Lumin., 2017, 192, 879 |
13. | N. M. A. Rashid, C. Haw, W. Chiu, CrystEngComm, 2016, 18, 4720 |
14. | Z. Luo, C. Li, S. Liu, T. Wang, J. Gong, Chem. Sci., 2017, 8, 91 |
15. | V. C. Janu, G. Bahuguna, D. Laishram, K. P. Shejale, N. Kumar, R. K. Sharma, and R. Gupta, Sol. Energy Mater. Sol. Cells, 2018, 174, 240 |
16. | R. Asapu, N. Claes, R. G. Ciocarlan, M. Minjauw, C. Detavernier, P. Cool, S. Bals, S. W. Verbruggen, ACS Appl. Nano Mater., 2019, 2, 4067 |
17. | J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, Chem. Rev., 2014, 114, 9919 |
18. | Y. Xiang, X. Wang, X. Zhang, H. Hou, K. Dai, Q. Huang, H. Chen, J. Mater. Chem. A, 2018, 6, 153 |
19. | M. A. Hernández-Carrillo, R. Torres-Ricárdez, M. F. García-Mendoza, E. Ramírez-Morales, L. Rojas-Blanco, L. L. Díaz-Flores, G. E. Sepúlveda-Palacios, F. Paraguay-Delgado, G. Pérez-Hernández, Catal. Today, 2020, 349, 191 |
20. | W. H. Lin, Y. H Chiu, P. W Shao, Y. J. Hsu, ACS Appl. Mater. Interfaces, 2016, 8, 32754 |
21. | C. B. Ong, L. Y. Ng, A. W. Mohammad, Renew. Sustain. Energy Rev., 2018, 81, 536 |
22. | S. P. Kim, M. Y. Choi, H. C. Choi, Mater. Res. Bull., 2016, 74, 85 |
23. | D. Zhao, W. Xiang, Mater. Lett., 2018, 210, 354 |
24. | C. Y. Tsa, C. W. Liu, C. Fan, H. C. His, T, Y. Chang, J. Phys. Chem. C, 2017, 121, 6050 |
25. | M. Mishra, D. M. Chun, Appl. Catal. A Gen., 2015, 498, 126 |
26. | J. Sundaramurthy, P. S. Kumar, M. Kalaivani, V. Thavasi, S. G. Mhaisalkar, S. Ramakrishna, RSC. Adv., 2012, 2, 8201 |
27. | B. Geng, B. Tao, X. Li, W. Wei, Nanoscale, 2012, 4, 1671 |
28. | G. Liu, Q. Deng, H. Wang, D. H. L. Ng, M. Kong, W. Cai, G. Wang, J. Mater. Chem., 2012, 22, 9704 |
29. | R. B. Anjaneyulu, B. S. Mohan, G. P. Naidu, R. Muralikrishna, Physica E: Low. Dimens. Syst. Nanostruct., 2019, 108, 105 |
30. | X. Wang, G. Liu, L. Wang, Z. G. Chen, Q. G. Lu, H. M. Cheng, Adv. Energy Mater., 2012, 2, 42 |
31. | D. Feng, J. Qu, R. Zhang, X. Sun, L. Zheng, H. Liu, X. Zhang, J. Catal., 2020, 381, 501 |
32. | G. Gong, Y. Liu, B. Mao, L. Tan, Y. Yang, W. Shi, Appl. Catal. B: Environ., 2016, 216, 11 |
33. | C. J. Chang, C. W. Wang, Y. H. Wei, C. Y. Chen, Int. J. Hydrogen Energy, 2018, 43, 11345 |
34. | T. Ali, A. Ahmed, U. Alam, I. Uddin, P. Tripathi, M. Muneer, Mater. Chem. Phys., 2018, 212, 325 |
35. | L. E. Mathevula, L. L. Noto, B. M. Mothudi, M. S. Dhlamini, Physica B Condens. Matter, 2018, 535, 258 |
36. | R. Reveendran, M. A. Khadar, Mater. Chem. Phys., 2018, 219, 142 |
37. | Y. Yin, X. Zhang, C. Sun, Prog. Nat. Sci.: Mater. Int., 2018, 28, 430 |
38. | M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Rev. Mod. Phys., 1992, 64, 1045 |
39. | J. P. Perdew, Y. Wang, Phys. Rev. B, 1992, 45, 13244 |
40. | K. Sameer, J. Mangesh, A. B. Delicia, K. V. Shyam, U. S. Raikar, New J. Chem., 2017, 41, 9513 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
The model of a pure, b 1Ag-deoped, c 2Ag-doped, d 3Ag-doped and e 4Ag-doped α-Fe2O3.
Energy band of a up-spin and b down-spin for pure α-Fe2O3.
Density of states of Fe and O atoms in pure α-Fe2O3.
Energy band of up-spin and down-spin for a 1Ag, b 2Ag, c 3Ag and d 4Ag/α-Fe2O3.
Density of states of up-spin and down-spin for a 1Ag, b 2Ag, c 3Ag and d 4Ag/α-Fe2O3.
Electron density of a pure, b 1Ag, c 2Ag, d 3Ag and e 4Ag/α-Fe2O3. Numbers represent bond lengths in Å.
Electron density difference of a pure, b 1Ag, c 2Ag, d 3Ag and e 4Ag/α-Fe2O3.
a Real parts and b imaginary parts of complex dielectric function for pure and Ag-doped α-Fe2O3.
a Real parts and b imaginary parts of complex refractive index for pure and Ag-doped α-Fe2O3.
Optical absorption of pure and Ag-doped α-Fe2O3. (UV-L and IR-L represent ultraviolet light and infrared light, respectively.) The incident AM 1.5G solar flux (ref 41) is shown as a reference.