Citation: | Wannuo Li, Qian Yang, Doudou Liang, Jun Zhi, Yucen Liu, Qijie Wu, Long Zhang, Shun Li, Jianming Zhang, Yuqiao Zhang. Electrochemical control ionic defects modulation induced phase transition in SrCoOx: progress and prospect[J]. Materials Lab, 2024, 3(2): 230030. doi: 10.54227/mlab.20230030 |
Transition metal oxides (TMOs), as one of the advanced materials, have been widely studied due to their unique electronic, magnetic, optical, and thermal transport properties. Among them, SrCoO
1. | C. N. R. Rao, Annual Review of Physical Chemistry, 1989, 40, 291 |
2. | S. V. Kalinin, N. A. Spaldin, Science, 2013, 341, 858 |
3. | T. Rao, Y. Zhou, J. Jiang, P. Yang, W. Liao, Nano Energy, 2022, 100, 107479 |
4. | H.-Y. Lo, C.-Y. Yang, G.-M. Huang, C.-Y. Huang, J.-Y. Chen, C.-W. Huang, Y.-H. Chu, W.-W. Wu, Nano Energy, 2020, 72, 104683 |
5. | Q. Li, H. Li, Q. Xia, Z. Hu, Y. Zhu, S. Yan, C. Ge, Q. Zhang, X. Wang, X. Shang, S. Fan, Y. Long, L. Gu, G.-X. Miao, G. Yu, J. S. Moodera, Nature Materials, 2021, 20, 76 |
6. | J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, S. S. P. Parkin, Science, 2013, 339, 1402 |
7. | T. Katase, Y. Suzuki, H. Ohta, Advanced Electronic Materials, 2016, 2, 1600044 |
8. | T. Close, G. Tulsyan, C. A. Diaz, S. J. Weinstein, C. Richter, Nature Nanotechnology, 2015, 10, 418 |
9. | H. Ji, J. Wei, D. Natelson, Nano Letters, 2012, 12, 2988 |
10. | K. Shibuya, A. Sawa, Advanced Electronic Materials, 2016, 2, 1500131 |
11. | J. Cho, M. D. Losego, H. G. Zhang, H. Kim, J. Zuo, I. Petrov, D. G. Cahill, P. V. Braun, Nature Communications, 2014, 5, 4035 |
12. | X. Ding, C. C. Tam, X. Sui, Y. Zhao, M. Xu, J. Choi, H. Leng, J. Zhang, M. Wu, H. Xiao, X. Zu, M. Garcia-Fernandez, S. Agrestini, X. Wu, Q. Wang, P. Gao, S. Li, B. Huang, K.-J. Zhou, L. Qiao, Nature, 2023, 615, 50 |
13. | N. Lu, P. Zhang, Q. Zhang, R. Qiao, Q. He, H.-B. Li, Y. Wang, J. Guo, D. Zhang, Z. Duan, Z. Li, M. Wang, S. Yang, M. Yan, E. Arenholz, S. Zhou, W. Yang, L. Gu, C.-W. Nan, J. Wu, Y. Tokura, P. Yu, Nature, 2017, 546, 124 |
14. | Y. Tsujimoto, C. Tassel, N. Hayashi, T. Watanabe, H. Kageyama, K. Yoshimura, M. Takano, M. Ceretti, C. Ritter, W. Paulus, Nature, 2007, 450, 1062 |
15. | M. A. Hayward, E. J. Cussen, J. B. Claridge, M. Bieringer, M. J. Rosseinsky, C. J. Kiely, S. J. Blundell, I. M. Marshall, F. L. Pratt, Science, 2002, 295, 1882 |
16. | H. Jeen, W. S. Choi, M. D. Biegalski, C. M. Folkman, I. C. Tung, D. D. Fong, J. W. Freeland, D. Shin, H. Ohta, M. F. Chisholm, H. N. Lee, Nature Materials, 2013, 12, 1057 |
17. | H. Jeen, W. S. Choi, J. W. Freeland, H. Ohta, C. U. Jung, H. N. Lee, Advanced Materials, 2013, 25, 3651 |
18. | R. Le Toquin, W. Paulus, A. Cousson, C. Prestipino, C. Lamberti, Journal of the American Chemical Society, 2006, 128, 13161 |
19. | H.-B. Li, F. Lou, Y. Wang, Y. Zhang, Q. Zhang, D. Wu, Z. Li, M. Wang, T. Huang, Y. Lyu, J. Guo, T. Chen, Y. Wu, E. Arenholz, N. Lu, N. Wang, Q. He, L. Gu, J. Zhu, C.-W. Nan, X. Zhong, H. Xiang, P. Yu, Advanced Science, 2019, 6, 1901432 |
20. | Q. Yang, H. J. Cho, Z. Bian, M. Yoshimura, J. Lee, H. Jeen, J. Lin, J. Wei, B. Feng, Y. Ikuhara, H. Ohta, Advanced Functional Materials, 2023, 33, 2214939 |
21. | Q. Lu, S. Huberman, H. Zhang, Q. Song, J. Wang, G. Vardar, A. Hunt, I. Waluyo, G. Chen, B. Yildiz, Nature Materials, 2020, 19, 655 |
22. | G. Zhu, J. Liu, Q. Zheng, R. Zhang, D. Li, D. Banerjee, D. G. Cahill, Nature Communications, 2016, 7, 13211 |
23. | Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G. J. Snyder, Nature, 2011, 473, 66 |
24. | D. Zhang, J. Wang, L. Zhang, J. Lei, Z. Ma, C. Wang, W. Guan, Z. Cheng, Y. Wang, ACS Applied Materials & Interfaces, 2019, 11, 36658 |
25. | B. Jiang, Y. Yu, J. Cui, X. Liu, L. Xie, J. Liao, Q. Zhang, Y. Huang, S. Ning, B. Jia, B. Zhu, S. Bai, L. Chen, S. J Pennycook, J. He, Science, 2021, 371, 830 |
26. | B. Jiang, W. Wang, S. Liu, Y. Wang, C. Wang, Y. Chen, L. Xie, M. Huang, J. He, Science, 2022, 377, 208 |
27. | Y. Kobayashi, O. J. Hernandez, T. Sakaguchi, T. Yajima, T. Roisnel, Y. Tsujimoto, M. Morita, Y. Noda, Y. Mogami, A. Kitada, M. Ohkura, S. Hosokawa, Z. Li, K. Hayashi, Y. Kusano, J. e. Kim, N. Tsuji, A. Fujiwara, Y. Matsushita, K. Yoshimura, K. Takegoshi, M. Inoue, M. Takano, H. Kageyama, Nature Materials, 2012, 11, 507 |
28. | F. Denis Romero, A. Leach, J. S. Möller, F. Foronda, S. J. Blundell, M. A. Hayward, Angewandte Chemie International Edition, 2014, 53, 7556 |
29. | C. Tassel, Y. Goto, Y. Kuno, J. Hester, M. Green, Y. Kobayashi, H. Kageyama, Angewandte Chemie International Edition, 2014, 53, 10377 |
30. | C. Tassel, J. M. Pruneda, N. Hayashi, T. Watanabe, A. Kitada, Y. Tsujimoto, H. Kageyama, K. Yoshimura, M. Takano, M. Nishi, K. Ohoyama, M. Mizumaki, N. Kawamura, J. Íñiguez, E. Canadell, Journal of the American Chemical Society, 2009, 131, 221 |
31. | S. Zhao, Y. Yang, Z. Tang, Angewandte Chemie International Edition, 2022, 61, e202110186 |
32. | Z. Zhou, Y. Kong, H. Tan, Q. Huang, C. Wang, Z. Pei, H. Wang, Y. Liu, Y. Wang, S. Li, X. Liao, W. Yan, S. Zhao, Advanced Materials, 2022, 34, 2106541 |
33. | Y. Liu, C. Li, C. Tan, Z. Pei, T. Yang, S. Zhang, Q. Huang, Y. Wang, Z. Zhou, X. Liao, J. Dong, H. Tan, W. Yan, H. Yin, Z. Liu, J. Huang, S. Zhao, Nature Communications, 2023, 14, 2475 |
34. | Z. Pei, H. Tan, J. Gu, L. Lu, X. Zeng, T. Zhang, C. Wang, L. Ding, P. J. Cullen, Z. Chen, S. Zhao, Nature Communications, 2023, 14, 818 |
35. | H. Han, A. Sharma, H. L. Meyerheim, J. Yoon, H. Deniz, K.-R. Jeon, A. K. Sharma, K. Mohseni, C. Guillemard, M. Valvidares, P. Gargiani, S. S. P. Parkin, ACS Nano, 2022, 16, 6206−6214 |
36. | N. Lu, Z. Zhang, Y. Wang, H.-B. Li, S. Qiao, B. Zhao, Q. He, S. Lu, C. Li, Y. Wu, M. Zhu, X. Lyu, X. Chen, Z. Li, M. Wang, J. Zhang, S. C. Tsang, J. Guo, S. Yang, J. Zhang, K. Deng, D. Zhang, J. Ma, J. Ren, Y. Wu, J. Zhu, S. Zhou, Y. Tokura, C.-W. Nan, J. Wu, P. Yu, Nature Energy, 2022, 7, 1208−1216 |
37. | H. Ohta, Y. Sato, T. Kato, S. Kim, K. Nomura, Y. Ikuhara, H. Hosono, Nature Communications, 2010, 1, 118 |
38. | T. Katase, K. Endo, T. Tohei, Y. Ikuhara, H. Ohta, Advanced Electronic Materials, 2015, 1, 1500063 |
39. | T. Katase, T. Onozato, M. Hirono, T. Mizuno, H. Ohta, Scientific Reports, 2016, 6, 25819 |
40. | Q. Yang, J. Lee, H. Jeen, H. J. Cho, H. Ohta, ACS Applied Electronic Materials, 2021, 3, 3296 |
41. | C. Xie, Y. Nie, B. O. Wells, J. I. Budnick, W. A. Hines, B. Dabrowski, Applied Physics Letters, 2011, 99, 052503 |
42. | Y. Takeda, R. Kanno, T. Takada, O. Yamamoto, M. Takano, Y. Bando, Zeitschrift für anorganische und allgemeine Chemie, 1986, 540, 259 |
43. | S. Hu, W. Han, S. Hu, J. Seidel, J. Wang, R. Wu, J. Wang, J. Zhao, Z. Xu, M. Ye, L. Chen, Chemistry of Materials, 2019, 31, 6117 |
44. | Q. Lu, Y. Chen, H. Bluhm, B. Yildiz, The Journal of Physical Chemistry C, 2016, 120, 24148 |
45. | N. Ichikawa, M. Iwanowska, M. Kawai, C. Calers, W. Paulus, Y. Shimakawa, Dalton Transactions, 2012, 41, 10507 |
46. | T. Katase, Y. Suzuki, H. Ohta, Journal of Applied Physics, 2017, 122, 135303 |
47. | C. Ahamer, A. K. Opitz, G. M. Rupp, J. Fleig, Journal of The Electrochemical Society, 2017, 164, F790 |
48. | W. Zhao, I. J. Kim, J. Gong, Journal of the Ceramic Society of Japan, 2010, 118, 550 |
49. | J. H. Shim, C.-C. Chao, H. Huang, F. B. Prinz, Chemistry of Materials, 2007, 19, 3850 |
50. | J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S. J. Pennycook, J. Santamaria, Science, 2008, 321, 676 |
51. | Q. Lu, B. Yildiz, Nano Letters, 2016, 16, 1186 |
52. | Q. Yang, H. J. Cho, H. Jeen, H. Ohta, Advanced Materials Interfaces, 2019, 6, 1901260 |
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Topotactic crystal structure change. BM-HxSCO2.5 is transparent weak ferromagnetic insulator, BM-SCO2.5 is a brown antiferromagnetic insulator, and PV-SCO3 is a black ferromagnetic metal.
Electrochemical induced H+ evolution in SrCoOx structure. a Schematic illustrations of oxidation/protonation process of SrCoO2.5 by using water containing ionic liquid electrolyte.[13] Copyright 2017, Springer Nature. b Topotactic phase transitions of SrCoOx during electrochemical protonation/oxidation process. Multi-phase transition (H2SCO2.5
a Schematic structure of electrochemical cell using 12CaO·7Al2O3 (CAN) film as the solid electrolyte. b Out-of-plane XRD patterns. When applying a positive voltage, HxSrCoO2.5 formed, whereas a negative voltage caused the conversion of SrCoO2.5 to SrCoO3.[40] Copyright 2021, American Chemical Society.
Schematic device structure composed of SrCoO2.5, leakage-free electrolyte, and a proton absorber layer. The role of the leakage-free electrolyte is to absorb water from the air, generating OH− ions for the oxidation reaction.[46] Copyright 2017, AIP Publishing.
a Oxidation current with different electron density was applied to the multilayer structure composed of Pt/YSZ/GDC/SrCoO2.5/Al at 300 °C in air as shown in the inset. SrCoOx samples with different oxidation states were prepared.[52] Copyright 2019, Wiley-VCH. b Macroscopic mapping of the insulating SCO2.5 region (blue part) and the conducting SCO3−x region (yellow part) was observed by conductive AFM.[52] Copyright 2019, Wiley-VCH. c Schematic structure of a solid-state electrochemical thermal transistor. The on-off state was controlled by phase transition from SrCoO3 and SrCoO2, respectively.[20] Copyright 2023, Wiley-VCH. d Repeatable changes in the thermal conductivity of the SrCoOx layer.[20] Copyright 2023, Wiley-VCH.