Wannuo Li, Qian Yang, Doudou Liang, Jun Zhi, Yucen Liu, Qijie Wu, Long Zhang, Shun Li, Jianming Zhang, Yuqiao Zhang. Electrochemical control ionic defects modulation induced phase transition in SrCoOx: progress and prospect[J]. Materials Lab. doi: 10.54227/mlab.20230030
Citation: Wannuo Li, Qian Yang, Doudou Liang, Jun Zhi, Yucen Liu, Qijie Wu, Long Zhang, Shun Li, Jianming Zhang, Yuqiao Zhang. Electrochemical control ionic defects modulation induced phase transition in SrCoOx: progress and prospect[J]. Materials Lab. doi: 10.54227/mlab.20230030

REVIEW ARTICLE

Electrochemical control ionic defects modulation induced phase transition in SrCoOx: progress and prospect

More Information
  • Corresponding author: yangqian0730@foxmail.com
  • Transition metal oxides (TMOs), as one of the advanced materials, have been widely studied due to their unique electronic, magnetic, optical, and thermal transport properties. Among them, SrCoOx (SCOx) is known as an oxygen sponge, where the ordered one-dimensional oxygen vacancy channels in the structure can work as the pathway for hydrogen/oxygen ions migration, facilitating the modulation of oxygen stoichiometry through the topotactic redox reaction. In this way, a “multi-state” phases transition with tunable physical properties can be realized. In this review, we summarize recent research progress in the utilization of H+ and O2− ions to induce distinct phase transitions in SCOx, which result in obvious physical property changes. The ability to control the properties of SCOx over a wide range through the incorporation of ionic defects provides a promising route for the development of advanced functional devices.


  • 加载中
  • Wannuo Li graduated from Northeast Agricultural University in 2022 and is currently a graduate student at Jiangsu University. Her research interests are fabrication of high quality epitaxial thin film and advanced functional devices.
    Qian Yang received her master degree in chemical science and engineering, and Ph.D degree in Electronics for Informatics from Hokkaido University (Japan). She awared a JSPS Fellowship for Young Scientists from 2021 to 2022. Her research interests include advanced fabrication technics of high quality epitaxial thin films, topotactic phase transition materials, electrochemical redox and protonation, and solid-state thermal transistor.
  • 1. C. N. R. Rao, Annual Review of Physical Chemistry, 1989, 40, 291
    2. S. V. Kalinin, N. A. Spaldin, Science, 2013, 341, 858
    3. T. Rao, Y. Zhou, J. Jiang, P. Yang, W. Liao, Nano Energy, 2022, 100, 107479
    4. H.-Y. Lo, C.-Y. Yang, G.-M. Huang, C.-Y. Huang, J.-Y. Chen, C.-W. Huang, Y.-H. Chu, W.-W. Wu, Nano Energy, 2020, 72, 104683
    5. Q. Li, H. Li, Q. Xia, Z. Hu, Y. Zhu, S. Yan, C. Ge, Q. Zhang, X. Wang, X. Shang, S. Fan, Y. Long, L. Gu, G.-X. Miao, G. Yu, J. S. Moodera, Nature Materials, 2021, 20, 76
    6. J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, S. S. P. Parkin, Science, 2013, 339, 1402
    7. T. Katase, Y. Suzuki, H. Ohta, Advanced Electronic Materials, 2016, 2, 1600044
    8. T. Close, G. Tulsyan, C. A. Diaz, S. J. Weinstein, C. Richter, Nature Nanotechnology, 2015, 10, 418
    9. H. Ji, J. Wei, D. Natelson, Nano Letters, 2012, 12, 2988
    10. K. Shibuya, A. Sawa, Advanced Electronic Materials, 2016, 2, 1500131
    11. J. Cho, M. D. Losego, H. G. Zhang, H. Kim, J. Zuo, I. Petrov, D. G. Cahill, P. V. Braun, Nature Communications, 2014, 5, 4035
    12. X. Ding, C. C. Tam, X. Sui, Y. Zhao, M. Xu, J. Choi, H. Leng, J. Zhang, M. Wu, H. Xiao, X. Zu, M. Garcia-Fernandez, S. Agrestini, X. Wu, Q. Wang, P. Gao, S. Li, B. Huang, K.-J. Zhou, L. Qiao, Nature, 2023, 615, 50
    13. N. Lu, P. Zhang, Q. Zhang, R. Qiao, Q. He, H.-B. Li, Y. Wang, J. Guo, D. Zhang, Z. Duan, Z. Li, M. Wang, S. Yang, M. Yan, E. Arenholz, S. Zhou, W. Yang, L. Gu, C.-W. Nan, J. Wu, Y. Tokura, P. Yu, Nature, 2017, 546, 124
    14. Y. Tsujimoto, C. Tassel, N. Hayashi, T. Watanabe, H. Kageyama, K. Yoshimura, M. Takano, M. Ceretti, C. Ritter, W. Paulus, Nature, 2007, 450, 1062
    15. M. A. Hayward, E. J. Cussen, J. B. Claridge, M. Bieringer, M. J. Rosseinsky, C. J. Kiely, S. J. Blundell, I. M. Marshall, F. L. Pratt, Science, 2002, 295, 1882
    16. H. Jeen, W. S. Choi, M. D. Biegalski, C. M. Folkman, I. C. Tung, D. D. Fong, J. W. Freeland, D. Shin, H. Ohta, M. F. Chisholm, H. N. Lee, Nature Materials, 2013, 12, 1057
    17. H. Jeen, W. S. Choi, J. W. Freeland, H. Ohta, C. U. Jung, H. N. Lee, Advanced Materials, 2013, 25, 3651
    18. R. Le Toquin, W. Paulus, A. Cousson, C. Prestipino, C. Lamberti, Journal of the American Chemical Society, 2006, 128, 13161
    19. H.-B. Li, F. Lou, Y. Wang, Y. Zhang, Q. Zhang, D. Wu, Z. Li, M. Wang, T. Huang, Y. Lyu, J. Guo, T. Chen, Y. Wu, E. Arenholz, N. Lu, N. Wang, Q. He, L. Gu, J. Zhu, C.-W. Nan, X. Zhong, H. Xiang, P. Yu, Advanced Science, 2019, 6, 1901432
    20. Q. Yang, H. J. Cho, Z. Bian, M. Yoshimura, J. Lee, H. Jeen, J. Lin, J. Wei, B. Feng, Y. Ikuhara, H. Ohta, Advanced Functional Materials, 2023, 33, 2214939
    21. Q. Lu, S. Huberman, H. Zhang, Q. Song, J. Wang, G. Vardar, A. Hunt, I. Waluyo, G. Chen, B. Yildiz, Nature Materials, 2020, 19, 655
    22. G. Zhu, J. Liu, Q. Zheng, R. Zhang, D. Li, D. Banerjee, D. G. Cahill, Nature Communications, 2016, 7, 13211
    23. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G. J. Snyder, Nature, 2011, 473, 66
    24. D. Zhang, J. Wang, L. Zhang, J. Lei, Z. Ma, C. Wang, W. Guan, Z. Cheng, Y. Wang, ACS Applied Materials & Interfaces, 2019, 11, 36658
    25. B. Jiang, Y. Yu, J. Cui, X. Liu, L. Xie, J. Liao, Q. Zhang, Y. Huang, S. Ning, B. Jia, B. Zhu, S. Bai, L. Chen, S. J Pennycook, J. He, Science, 2021, 371, 830
    26. B. Jiang, W. Wang, S. Liu, Y. Wang, C. Wang, Y. Chen, L. Xie, M. Huang, J. He, Science, 2022, 377, 208
    27. Y. Kobayashi, O. J. Hernandez, T. Sakaguchi, T. Yajima, T. Roisnel, Y. Tsujimoto, M. Morita, Y. Noda, Y. Mogami, A. Kitada, M. Ohkura, S. Hosokawa, Z. Li, K. Hayashi, Y. Kusano, J. e. Kim, N. Tsuji, A. Fujiwara, Y. Matsushita, K. Yoshimura, K. Takegoshi, M. Inoue, M. Takano, H. Kageyama, Nature Materials, 2012, 11, 507
    28. F. Denis Romero, A. Leach, J. S. Möller, F. Foronda, S. J. Blundell, M. A. Hayward, Angewandte Chemie International Edition, 2014, 53, 7556
    29. C. Tassel, Y. Goto, Y. Kuno, J. Hester, M. Green, Y. Kobayashi, H. Kageyama, Angewandte Chemie International Edition, 2014, 53, 10377
    30. C. Tassel, J. M. Pruneda, N. Hayashi, T. Watanabe, A. Kitada, Y. Tsujimoto, H. Kageyama, K. Yoshimura, M. Takano, M. Nishi, K. Ohoyama, M. Mizumaki, N. Kawamura, J. Íñiguez, E. Canadell, Journal of the American Chemical Society, 2009, 131, 221
    31. S. Zhao, Y. Yang, Z. Tang, Angewandte Chemie International Edition, 2022, 61, e202110186
    32. Z. Zhou, Y. Kong, H. Tan, Q. Huang, C. Wang, Z. Pei, H. Wang, Y. Liu, Y. Wang, S. Li, X. Liao, W. Yan, S. Zhao, Advanced Materials, 2022, 34, 2106541
    33. Y. Liu, C. Li, C. Tan, Z. Pei, T. Yang, S. Zhang, Q. Huang, Y. Wang, Z. Zhou, X. Liao, J. Dong, H. Tan, W. Yan, H. Yin, Z. Liu, J. Huang, S. Zhao, Nature Communications, 2023, 14, 2475
    34. Z. Pei, H. Tan, J. Gu, L. Lu, X. Zeng, T. Zhang, C. Wang, L. Ding, P. J. Cullen, Z. Chen, S. Zhao, Nature Communications, 2023, 14, 818
    35. H. Han, A. Sharma, H. L. Meyerheim, J. Yoon, H. Deniz, K.-R. Jeon, A. K. Sharma, K. Mohseni, C. Guillemard, M. Valvidares, P. Gargiani, S. S. P. Parkin, ACS Nano, 2022, 16, 6206−6214
    36. N. Lu, Z. Zhang, Y. Wang, H.-B. Li, S. Qiao, B. Zhao, Q. He, S. Lu, C. Li, Y. Wu, M. Zhu, X. Lyu, X. Chen, Z. Li, M. Wang, J. Zhang, S. C. Tsang, J. Guo, S. Yang, J. Zhang, K. Deng, D. Zhang, J. Ma, J. Ren, Y. Wu, J. Zhu, S. Zhou, Y. Tokura, C.-W. Nan, J. Wu, P. Yu, Nature Energy, 2022, 7, 1208−1216
    37. H. Ohta, Y. Sato, T. Kato, S. Kim, K. Nomura, Y. Ikuhara, H. Hosono, Nature Communications, 2010, 1, 118
    38. T. Katase, K. Endo, T. Tohei, Y. Ikuhara, H. Ohta, Advanced Electronic Materials, 2015, 1, 1500063
    39. T. Katase, T. Onozato, M. Hirono, T. Mizuno, H. Ohta, Scientific Reports, 2016, 6, 25819
    40. Q. Yang, J. Lee, H. Jeen, H. J. Cho, H. Ohta, ACS Applied Electronic Materials, 2021, 3, 3296
    41. C. Xie, Y. Nie, B. O. Wells, J. I. Budnick, W. A. Hines, B. Dabrowski, Applied Physics Letters, 2011, 99, 052503
    42. Y. Takeda, R. Kanno, T. Takada, O. Yamamoto, M. Takano, Y. Bando, Zeitschrift für anorganische und allgemeine Chemie, 1986, 540, 259
    43. S. Hu, W. Han, S. Hu, J. Seidel, J. Wang, R. Wu, J. Wang, J. Zhao, Z. Xu, M. Ye, L. Chen, Chemistry of Materials, 2019, 31, 6117
    44. Q. Lu, Y. Chen, H. Bluhm, B. Yildiz, The Journal of Physical Chemistry C, 2016, 120, 24148
    45. N. Ichikawa, M. Iwanowska, M. Kawai, C. Calers, W. Paulus, Y. Shimakawa, Dalton Transactions, 2012, 41, 10507
    46. T. Katase, Y. Suzuki, H. Ohta, Journal of Applied Physics, 2017, 122, 135303
    47. C. Ahamer, A. K. Opitz, G. M. Rupp, J. Fleig, Journal of The Electrochemical Society, 2017, 164, F790
    48. W. Zhao, I. J. Kim, J. Gong, Journal of the Ceramic Society of Japan, 2010, 118, 550
    49. J. H. Shim, C.-C. Chao, H. Huang, F. B. Prinz, Chemistry of Materials, 2007, 19, 3850
    50. J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S. J. Pennycook, J. Santamaria, Science, 2008, 321, 676
    51. Q. Lu, B. Yildiz, Nano Letters, 2016, 16, 1186
    52. Q. Yang, H. J. Cho, H. Jeen, H. Ohta, Advanced Materials Interfaces, 2019, 6, 1901260
  • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Information

Article Metrics

Article views(907) PDF downloads(290) Citation(0)

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint